首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How populations adapt, or not, to rapid evolution of sexual signals has important implications for population viability, but is difficult to assess due to the paucity of examples of sexual signals evolving in real time. In Hawaiian populations of the Pacific field cricket (Teleogryllus oceanicus), selection from a deadly parasitoid fly has driven the rapid loss of a male acoustic signal, calling song, that females use to locate and evaluate potential mates. In this newly quiet environment where many males are obligately silent, how do phonotactic females find mates? Previous work has shown that the acoustic rearing environment (presence or absence of male calling song) during late juvenile stages and early adulthood exposes adaptive flexibility in locomotor behaviors of males, as well as mating behaviors in both sexes that helps facilitate the spread of silent (flatwing) males. Here, we tested whether females also show acoustically induced plasticity in walking behaviors using laboratory‐reared populations of T. oceanicus from Kauai (HI; >90% flatwings), Oahu (HI; ~50% flatwings), and Mangaia (Cook Islands; no flatwings or parasitoid fly). Though we predicted that females reared without song exposure would increase walking behaviors to facilitate mate localization when song is rare, we discovered that, unlike males, female T. oceanicus showed relatively little plasticity in exploratory behaviors in response to an acoustic rearing environment. Across all three populations, exposure to male calling song during development did not affect latency to begin walking, distance walked, or general activity of female crickets. However, females reared in the absence of song walked slower and showed a marginally non‐significant tendency to walk for longer durations of time in a novel environment than those reared in the presence of song. Overall, plasticity in female walking behaviors appears unlikely to have facilitated sexual signal loss in this species.  相似文献   

2.
Female choice based on male secondary sexual traits is well documented, although the extent to which this selection can drive an evolutionary divergence in male traits among populations is less clear. Male field crickets Teleogryllus oceanicus attract females using a calling song and once contacted switch to courtship song to persuade them to mate. These crickets also secrete onto their cuticle a cocktail of long‐chained fatty acids or cuticular hydrocarbons (CHCs). Females choose among potential mates based on the structure of male acoustic signals and on the composition of male CHC profiles. Here, we utilize two naturally occurring mutations that have arisen independently on two Hawaiian islands and render the male silent to ask whether the evolutionary loss of acoustic signalling can drive an evolutionary divergence in the alternative signalling modality, male CHC profiles. QSTFST comparisons revealed strong patterns of CHC divergence among three populations of crickets on the islands of Hawaii, Oahu and Kauai. Contrasts between wild‐type and flatwing males on the islands of Oahu and Kauai indicated that variation in male CHC profiles within populations is associated with the loss of acoustic signalling; flatwing males had a relatively low abundance of long‐chained CHCs relative to the short‐chained CHCs that females find attractive. Given their dual functions in desiccation resistance and sexual signalling, insect CHCs may be particularly important traits for reproductive isolation and ultimately speciation.  相似文献   

3.
Rapid evolution has been well documented in naturally selected traits, but few examples exist for sexually selected traits, particularly sexual signals. This may in part be due to the complex set of behaviors associated with sexual signals. For a sexual signal to change, the change must be favorable for the signaler, but must also be accommodated by the receiver's perception and preferences. We investigated female accommodation of an extreme change in the sexual signal of Polynesian field crickets, Teleogryllus oceanicus . The cricket is native to Australia, widely distributed on Pacific Islands, and was recently introduced to Hawaii. Selective pressure by a deadly parasitoid fly favored a wing mutation in Hawaii (flatwing) that eliminates males' singing ability altogether. Despite conventional wisdom that females require males to produce a courtship song before mating, we show that females from ancestral, unparasitized Australian and Pacific Island populations as well as parasitized Hawaiian populations, will mate with silent flatwing males, suggesting this behavioral option predates the change in sexual signal. Furthermore, ancestral Australian females discriminate against flatwing males more severely than island females. We suggest island colonization favored females with relaxed mating requirements (Kaneshiro's effect) facilitating the rapid evolutionary loss of song in Hawaii.  相似文献   

4.
Sexual signal evolution may present fitness consequences for the non‐signaling sex due to shared genes and altered social conditions, but this is rarely studied in natural populations. On the Hawaiian Island of Kauai, most male Teleogryllus oceanicus (Pacific field crickets) lack the ability to sing because of a novel wing mutation (flatwing) that arose and spread in <20 generations. Obligately silent flatwing males have been highly successful because they avoid detection by a deadly, acoustically‐orienting parasitoid fly. Little is known about how the flatwing mutation and resulting song‐less acoustic environment affects female fitness. We found that Kauai females carrying the flatwing allele invested less in reproductive tissues and experienced more instances of mating failure than normal‐wing‐carrying females, though total offspring production did not differ between female genotypes. Females from Oahu (HI, where the parasitoid and flatwing also occur) and Mangaia (an island in the Cook Islands which harbors neither the parasitoid nor flatwing) invested less in reproductive tissues when reared in a song‐less acoustic environment. Kauai females did not exhibit this plasticity, perhaps because they have experienced nearly song‐less conditions for the past ~15 years following the establishment of flatwing. We show that female T. oceanicus experience a mix of costly and beneficial effects of sexual signal loss, which should help maintain the wing polymorphism in the wild. Our results demonstrate that the non‐signaling sex can experience a nuanced set of phenotypic consequences resulting from signal evolution, which can further shape dynamics of sexual signal evolution.  相似文献   

5.
Sexual signals are often critical for mate attraction and reproduction, although their conspicuousness exposes them to parasites and predators. We document the near-disappearance of song, the sexual signal of crickets, and its replacement with a novel silent morph, in a population subject to strong natural selection by a deadly acoustically orienting parasitoid fly. On the Hawaiian Island of Kauai, more than 90% of male field crickets (Teleogryllus oceanicus) shifted in less than 20 generations from a normal-wing morphology to a mutated wing that renders males unable to call (flatwing). Flatwing morphology protects male crickets from the parasitoid, which uses song to find hosts, but poses obstacles for mate attraction, since females also use the males' song to locate mates. Field experiments support the hypothesis that flatwings overcome the difficulty of attracting females without song by acting as 'satellites' to the few remaining callers, showing enhanced phonotaxis to the calling song that increases female encounter rate. Thus, variation in behaviour facilitated establishment of an otherwise maladaptive morphological mutation.  相似文献   

6.
Pleiotropy between male signals and female preferences can facilitate evolution of sexual communication by maintaining coordination between the sexes. Alternatively, it can favor variation in the mating system, such as a reproductive polymorphism. It is unknown how common either of these scenarios is in nature. In Pacific field crickets (Teleogryllus oceanicus) on Kauai, Hawaii, a mutation (flatwing) that segregates as a single locus is responsible for the rapid loss of song production in males. We used outbred cricket colonies fixed for male wing morph to investigate whether homozygous flatwing and normal-wing (wild-type) females differ in responsiveness to male calling song and propensity to mate when paired with either a flatwing or normal-wing male in the presence or absence of courtship song. Flatwing females were less likely to mount a male than normal-wing females. Females of both genotypes showed a preference for normal-wing males and were more likely to mate in the presence of courtship song; normal-wing females were particularly likely to mate with song. Our results show that negative pleiotropy between obligate male silence and female mating behavior can constrain the evolution of sexual signal loss and contribute to the maintenance of a male reproductive polymorphism in the wild.  相似文献   

7.
Evolutionary biologists commonly seek explanations for how selection drives the emergence of novel traits. Although trait loss is also predicted to occur frequently, few contemporary examples exist. In Hawaii, the Pacific field cricket (Teleogryllus oceanicus) is undergoing adaptive sexual signal loss due to natural selection imposed by eavesdropping parasitoids. Mutant male crickets (“flatwings”) cannot sing. We measured the intensity of sexual selection on wing phenotype in a wild population. First, we surveyed the relative abundance of flatwings and “normal‐wings” (nonmutants) on Oahu. Then, we bred wild‐mated females’ offspring to determine both female genotype with respect to the flatwing mutation and the proportion of flatwing males that sired their offspring. We found evidence of strong sexual selection favoring the production of song: females were predominantly homozygous normal‐wing, their offspring were sired disproportionately by singing males, and at the population level, flatwing males became less common following a single sexual selection event. We report a selection coefficient describing the total (pre‐ and postcopulatory) sexual selection favoring normal‐wing males in nature. Given the maintenance of the flatwing phenotype in Hawaii in recent years, this substantial sexual selection additionally suggests an approximate strength of opposing natural selection that favors silent males.  相似文献   

8.
Gray  David A. 《Behavioral ecology》2005,16(1):201-206
Reproductive behavior influences gene flow within and amongspecies; thus, sexual selection may be a major contributor tothe maintenance of species, and possibly their formation. HereI experimentally manipulate the courtship interactions of thefield crickets Gryllus rubens and G. texensis to examine thepotential of close-range courtship interactions to limit interspecificgene flow. Responses of males to females and of females to malecourtship song and males per se were examined for four pairedsympatric and allopatric populations. Male G. rubens were morelikely to court conspecific females, but male G. texensis courtedfemales of both species equally. If paired with conspecificmales, female G. rubens and G. texensis both preferred conspecificcourtship song. In none of these comparisons were the responsesof males or females from allopatry different from those in sympatry.There was an asymmetry of courtship response across both sexand species: male G. rubens were more discriminating than maleG. texensis, whereas female G. texensis were more discriminatingthan female G. rubens. Despite significant preferences for conspecifics,the net effect of courtship interactions would appear to limitinterspecific gene flow only weakly. These results are consistentwith courtship behavior evolving under the influence of sexualselection and only indirectly promoting species integrity.  相似文献   

9.
Female choice can drive the evolution of extravagant male traits. In invertebrates, the influence of prior social experience on female choice has only recently been considered. To better understand the evolutionary implications of experience-mediated plasticity in female choice, we investigated the effect of acoustic experience during rearing on female responsiveness to male song in the field cricket Teleogryllus oceanicus. Acoustic experience has unique biological relevance in this species: a morphological mutation has rendered over 90 per cent of males on the Hawaiian island of Kauai silent in fewer than 20 generations, impeding females' abilities to locate potential mates. Females reared in silent conditions mimicking Kauai were less discriminating of male calling song and more responsive to playbacks, compared with females that experienced song during rearing. Our results to our knowledge, are the first demonstration of long-term effects of acoustic experience in an arthropod, and suggest that female T. oceanicus may be able to compensate for the reduced availability of long-range male sexual signals by increasing their responsiveness to the few remaining signallers. Understanding the adaptive significance of experience-mediated plasticity in female choice provides insight into processes that facilitate rapid evolutionary change and shape sexual selection pressure in natural populations.  相似文献   

10.
The receiver bias model for the evolution of mating signals proposes that selection favors male displays that happen to stimulate a general, ancestral perception in females such that receptivity and successful courtship increase. If these male signals do arise, however, the female perception will operate in two contexts, the original, typically non‐sexual, one and courtship. We may then ask whether these two functions represent the same or distinct traits, which may be under separate neural and genetic control. We studied this question in Achroia grisella, a pyralid moth species in which males attract females, with an ultrasonic mating song. Hearing in pyralid moths is widespread and originated in an anti‐predator context – the perception and avoidance of echolocating bats – and it is inferred that the male song found in A. grisella, and in several other pyralid species, arose subsequently via a receiver bias mechanism: Females perceiving male‐produced ultrasound and responding with anti‐predator behavior normally exhibited in the presence of bat echolocations may have inadvertently increased the likelihood of successful courtship. We measured hearing responses in both sexual and anti‐predator contexts in inbred lines developed from an A. grisella population. Significant inter‐line variance was observed for sensitivity thresholds for female response to male song and for both female and male responses to synthetic bat echolocation signals. Female responses to male song and to synthetic echolocations differed markedly in sensitivity, and the median sexual and anti‐predator responses in the various lines were not correlated. However, a higher level of similarity occurs between the female and male anti‐predator responses. Thus, genetic variance for sexual and anti‐predator responses appears to exist, and the two responses may represent independent traits. These results imply that when male signals originate via a receiver bias mechanism, female perception does not necessarily remain fixed in its ancestral state but has the potential for continued modification.  相似文献   

11.
Tinghitella RM 《Heredity》2008,100(3):261-267
Colonizing events may expose organisms to physical and ecological environments found nowhere else in their range. Novel selection pressures can then influence subsequent rapid evolutionary changes. Here, I investigate the genetics of one such rapid change in the sexual signal of Polynesian field crickets, Teleogryllus oceanicus, that recently colonized the Hawaiian Islands. In Hawaii, T. oceanicus encounter a deadly parasitoid fly found nowhere else in their range. In <20 generations, a wing mutation, flatwing, that eliminates the crickets' song, an important sexual signal, but protects them from the fly, spread to >90% of males on the island of Kauai. I show, using crosses between flatwing males and females from a population that has never contained flatwings, that the song-suppressing mutation is due to a change in a single sex-linked locus. Contemporary evolution of secondary sexual characteristics has only rarely been identified as the result of single-gene changes and never before as a single sex-linked locus, but sex-linked inheritance is thought to facilitate the rapid evolution of these types of traits. Because divergence of sexual signals can influence reproductive isolation, understanding how colonization events and subsequent selection affect signals, and the genetic mechanisms of such change, can shed light on processes likely to play a role in speciation.  相似文献   

12.
The courtship songs of male Drosophila have been studied atthe behavioural, genetic and molecular levels. Less attentionhas been paid to the female's responses to these songs. Playbackexperiments are described which suggest that courtship songsare an important component of female mate choice. Some of theimplications of the behavioural responses of hybrid femalesbetween D. melanogaster and D. simulans are examined in thelight of theories concerning the mechanisms by which insectcommunication systems might evolve. The role of the period genein both male song production and in female song reception isconsidered, and the neural regions in the female which may beimportant for song integration are briefly discussed.  相似文献   

13.
The dissonance mutant of courtship song was induced by chemical mutagenesis. This X-chromosomal mutation causes the D. melanogaster male's acoustical output, resulting from his wing vibrations directed at a female, to include very long and loud tone "pulses." Yet, a given train of pulses starts out as normal, with the signals in all but the shortest singing bouts eventually becoming polycyclic and high-amplitude. The aberrant songs caused by diss (map position, 1-52; cytological interval, 14C1-2 to 14C4-5) were quantitatively compared to those produced by mutant cacophony males, whose pulses are much more uniformly polycyclic (due to a mutation mapping elsewhere on the X chromosome). Males or females expressing diss are normal in several "general" behaviors. Yet diss males not only sing abnormally, but they also exhibit longer-than-normal mating latencies in their courtship of females. These decrements seem to be associated, at least in part, with visually aberrant behavior of diss flies--measured with regard to male courtship per se, and also in tests of more general visual responses. Such defects were found when testing diss males or females, and the genetic etiology of the visual impairments were provisionally mapped to the same locus to which the song abnormality has been localized. Neurogenetic connections between the control of courtship singing behavior and visual system functions are discussed with respect to the new song mutation (diss) and the older one (cac)--which also turned out to be genetically related to a mutation that causes abnormalities of light-induced behavior and physiology.  相似文献   

14.
Differences in male mating success can generate selection on male morphological traits and courtship behaviors involved in male–male competition or female mate choice. In Photinus fireflies (Coleoptera: Lampyridae), courtship is based on bioluminescent flash signals produced by both sexes. We conducted field observations of Photinus greeni fireflies engaged in competitive courtships, in which females are able to simultaneously assess several males, to identify male morphological traits and courtship behaviors that might predict male mating success. Male morphological traits did not differ between males that successfully mated compared with unsuccessful males (dialoging males that did not mate). However, courtship behavioral interactions differed: successful males tended to have higher flash pattern rates (number of flash patterns per minute), and their courtship flashes were more likely to be answered by females. We also examined how the risk of predation by Photuris fireflies altered courtship behavior of their Photinus prey. When predatory Photuris fireflies were present, P. greeni females were less likely to mate, and showed decreased flash responses to most males. However, P. greeni males that did successfully mate in spite of Photuris presence were males that maintained high flash pattern rates that elicited female responses. These results suggest that both female mate choice and Photuris predation exert strong selective pressures on the evolution of courtship signals in Photinus fireflies.  相似文献   

15.
Mating behavior was studied in two laboratory populations of Drosophila sechellia and their reciprocal hybrids. The ancestral population was reared on a special medium, optimal for this species, while the derived population was reared on a standard Drosophila food, and underwent a bottleneck while adapting to this new medium, in a manner similar to the “founder-flush” process of Carson (1971). A significant tendency towards mating asymmetry was found, with ancestral females mating significantly less frequently with derived males than derived females with ancestral males. Analysis of hybrids suggested an important role for the male's X chromosome or for a maternal effect. No significant differences were found among parental types for their main female cuticular hydrocarbons, the proportion of courtship spent in various behavioral elements, body weight, or wing length. Significant differences were found in the structure of courtship, male locomotor activity, male cuticular hydrocarbon levels, and male courtship song inter-pulse interval (i.p.i.). None of these differences showed an X-linked effect in the reciprocal hybrids. Hypotheses put forward to explain interspecific mating asymmetries are discussed in the light of these results.  相似文献   

16.
ABSTRACT. A behavioural continuum ranging from extreme aggression to overt sexual behaviour was used to measure male crickets' reactions to being touched in a standardized manner on their antennae with freshly severed antennae of male and female conspecifics. Sexually receptive males responded primarily with the aggressive song to male antennae and with the courtship song to female antennae. The ontogeny of the antennal effectiveness and the males' reaction was also determined. Because the ability of the antennae to elicit a reaction could be eliminated by treating them with chloroform, and since there were no morphological differences between male and female antennae, separate male and female sex recognition pheromones must be implicated. The chemo-tactile nature of these substances is indicated by the inability to obtain either behavioural or EAG responses to air carrying the odour of males or females.  相似文献   

17.
Low‐amplitude acoustic signals intended for short‐range communication, often called soft songs, remain poorly studied, especially among acoustically communicating invertebrates. Some insects do employ low‐amplitude acoustic signals, but it remains unclear what the specific function, if any, is of quietness per se. Male Teleogryllus oceanicus, or Pacific field crickets, produce a two component, short‐distance courtship song consisting of a high‐amplitude series of chirps followed by a lower‐amplitude trill. We investigated whether female T. oceanicus prefer to mate with males that sing courtship songs containing trill components that are equally as loud as (?0 dB) or quieter than (?3 dB and ?10 dB) the loudest chirp (90 dB). We found no evidence that modifying trill amplitude affects female mate preference. We did, however, find that previously unmated females were faster to mount males than were females that had mated once before. Previous mating status showed no significant interaction with trill amplitude. What, if any, function of low‐amplitude components of field cricket courtship song remains to be determined.  相似文献   

18.
Two grasshopper species, Stenobothrus rubicundus and Stenobothrus clavatus, were previously shown to hybridize in a narrow contact zone on Mount Tomaros in northern Greece. The species are characterized by complex and completely different courtship songs. In the present study, we investigated female preferences for the courtship songs of S. rubicundus, S. clavatus and hybrids in playback experiments. Playback of the courtship songs revealed assortative preferences in females of the parental species: they significantly more often preferred the songs of conspecific males. Hybrid females showed a lower selectivity than parental females, responding somewhat equally eager to playback of the songs of S. clavatus, S. rubicundus, and natural hybrid song, although less actively to the F1 hybrid song. The results suggest that hybrid males may lose to males of parental species, whereas hybrid females would even have an advantage over parental females. Comparison of responses of females from allopatric populations and Mount Tomaros to different song types shows no evidence for reinforcement. Asymmetry found in female preferences may have implications for the structure of the hybrid zone. © 2013 The Linnean Society of London  相似文献   

19.
陈博  文乐雷  赵菊鹏  梁宏合  陈建  焦晓国 《生态学报》2017,37(11):3932-3938
越来越多的研究发现,雄性产生精子(精液)也需付出代价。雄性除了依据配偶质量和竞争对手的竞争强度适应性调整生殖投入外,雄性在求偶和交配行为上也相应产生适应性反应,求偶和交配行为具有可塑性。目前雄性求偶和交配行为可塑性研究主要集中于雌性多次交配的类群中,在雌性单次交配的类群中研究甚少。以雌蛛一生只交配一次而雄蛛可多次交配的星豹蛛为研究对象,比较:(1)前一雄性拖丝上信息物质对后续雄蛛求偶和交配行为的影响,(2)雌雄不同性比对雄蛛求偶和交配行为的影响。研究结果表明,星豹蛛前一雄蛛拖丝上的信息物质对后续雄蛛求偶潜伏期、求偶持续时间和交配持续时间都没有显著影响,但前一雄蛛拖丝上的信息物质对后续雄蛛求偶强度有显著抑制作用。同时,性比对星豹蛛雄蛛求偶和交配行为都没有显著影响。可见,星豹蛛雄蛛对同种雄性拖丝上的化学信息可产生求偶行为的适应性调整,而对性比不产生适应性反应。  相似文献   

20.
  1. The courtship behavior of male field crickets, Gryllus bimaculatus (De Geer) and Teleogryllus oceanicus, is a complex, multimodal behavioral act that involves acoustic signals (a courtship song; Fig. 1A,B). The dominant frequency is 4.5 kHz for T. oceanicus song (Fig. 1A) and 13.5 kHz for G. bimaculatus (Fig. IB).
  2. When courting males are deprived of their courtship song by wing amputation, their courtship success declines markedly but is restored when courting is accompanied by tape-recordings of their courtship songs or a synthetic courtship song with only the dominant frequency of the natural song; other naturally occurring frequency components are ineffective for restoring mating success (Figs. 4, 5).
  3. It has been suggested that an identified auditory interneuron, AN2, plays a critical role in courtship success. Chronic recordings of AN2 in an intact, tethered female show that AN2's response to the natural courtship song and synthesized songs at 4.5 and 13.5 kHz is similar in T. oceanicus. By contrast, in G. bimaculatus, AN2's response to the natural courtship song and synthesized song at 13.5 kHz, but not at 4.5 kHz, is similar (Figs. 2,3).
  4. In behavioral experiments, playback of a 30 kHz synthetic courtship song in G. bimaculatus does not restore courtship success, yet this same stimulus elicits as strong a response from AN2 as does the normal courtship song (Fig. 6). Thus, contrary to earlier work by others, we conclude AN2 is not, by itself, a critical neural link in the courtship behavior of these two species of crickets.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号