首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Advances in cell adhesion research have often been linked to technological advances. The development of monoclonal antibody technology allowed the definition of the molecular components of cell adhesion and pointed to the complexity of the leukocyte cell surface (Knapp & Gilks, 1989); previously only the erythrocyte had been subjected to attempts at detailed analysis of membrane associated molecules (Steck, 1974). It was also possible to use selection strategies to produce antibodies that could perturb functional properties of the antigens they recognise. The interaction between the T cell surface molecule CD2 and its natural ligand LFA-3 was defined by monoclonal antibodies which blocked adhesion and the same antibodies have allowed large scale purification of these proteins for detailed in vitro studies (Dustin & Springer, 1991).  相似文献   

2.
Malaria parasites reside inside erythrocytes and the disease manifestations are linked to the growth inside infected erythrocytes (IE). The growth of the parasite is mostly confined to the trophozoite stage during which nuclear division occurs followed by the formation of cell bodies (schizogony). The mechanism and regulation of schizogony are poorly understood. Here we show a novel role for a Plasmodium falciparum 60S stalk ribosomal acidic protein P2 (PfP2) (PFC0400w), which gets exported to the IE surface for 6–8 hrs during early schizogony, starting around 26–28 hrs post-merozoite invasion. The surface exposure is demonstrated using multiple PfP2-specific monoclonal antibodies, and is confirmed through transfection using PfP2-GFP. The IE surface-exposed PfP2-protein occurs mainly as SDS-resistant P2-homo-tetramers. Treatment with anti-PfP2 monoclonals causes arrest of IEs at the first nuclear division. Upon removal of the antibodies, about 80–85% of synchronized parasites can be released even after 24 hrs of antibody treatment. It has been reported that a tubovesicular network (TVN) is set up in early trophozoites which is used for nutrient import. Anti-P2 monoclonal antibodies cause a complete fragmentation of TVN by 36 hrs, and impairs lipid import in IEs. These may be downstream causes for the cell-cycle arrest. Upon antibody removal, the TVN is reconstituted, and the cell division progresses. Each of the above properties is observed in the rodent malaria parasite species P. yoelii and P. berghei. The translocation of the P2 protein to the IE surface is therefore likely to be of fundamental importance in Plasmodium cell division.  相似文献   

3.
Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease caused by autoantibodies directed against the desmosomal cadherin desmoglein-3 (Dsg3). Significant advances in our understanding of pemphigus pathomechanisms have been derived from the generation of pathogenic monoclonal Dsg3 antibodies. However, conflicting models for pemphigus pathogenicity have arisen from studies using either polyclonal PV patient IgG or monoclonal Dsg3 antibodies. In the present study, the pathogenic mechanisms of polyclonal PV IgG and monoclonal Dsg3 antibodies were directly compared. Polyclonal PV IgG cause extensive clustering and endocytosis of keratinocyte cell surface Dsg3, whereas pathogenic mouse monoclonal antibodies compromise cell-cell adhesion strength without causing these alterations in Dsg3 trafficking. Furthermore, tyrosine kinase or p38 MAPK inhibition prevents loss of keratinocyte adhesion in response to polyclonal PV IgG. In contrast, disruption of adhesion by pathogenic monoclonal antibodies is not prevented by these inhibitors either in vitro or in human skin explants. Our results reveal that the pathogenic activity of polyclonal PV IgG can be attributed to p38 MAPK-dependent clustering and endocytosis of Dsg3, whereas pathogenic monoclonal Dsg3 antibodies can function independently of this pathway. These findings have important implications for understanding pemphigus pathophysiology, and for the design of pemphigus model systems and therapeutic interventions.  相似文献   

4.
We have previously reported the use of monoclonal antibodies to identify a 140-kD cell surface glycoprotein in mammalian cells that is specifically involved in fibronectin-mediated cell adhesion. We now report the purification of this molecule using immunoaffinity chromatography and the subsequent generation of polyclonal antibodies that selectively immunoprecipitate 140-kD putative fibronectin receptor glycoprotein (gp140) extracted from rodent or human cells; these antibodies also specifically block fibronectin-mediated cell adhesion but not adhesion mediated by other factors in serum. Expression of gp140-like molecules was detected on the surfaces of several adherent human cell lines (HDF, WISH, and EFC) but not on erythrocytes; however, gp140 was also detected on a nonadherent human lymphoid line (DAUDI). Analysis of gp140 on nonreducing SDS gels revealed two closely migrating bands. Protease digestion and peptide mapping suggests that the two bands are closely related polypeptides.  相似文献   

5.
Endogenous lectins as mediators of tumor cell adhesion   总被引:1,自引:0,他引:1  
Endogenous carbohydrate-binding proteins have been found in various normal tissues and cells. Although lectins with different sugar-binding specificities have been described, the most prevalent ones are those that bind beta-galactosides. The ability of some normal and malignant cells to bind exogenous carbohydrate-containing ligands suggested that lectinlike activity is associated with the cell surface and that carbohydrate-binding proteins might mediate intercellular recognition and adhesion. We found that extracts of various cultured murine and human tumor cells exhibit a galactoside-inhibitable hemagglutinating activity. This activity was associated with two proteins of molecular weights of 34,000 and 14,500 daltons, which were purified by affinity chromatography by using immobilized asialofetuin. That these lectins are present on the cell surface was indicated by the binding of monoclonal antilectin antibodies to the surface of various tumor cells and by the immunoprecipitation of 125I-labeled lectins from solubilized cell-surface iodinated cells by polyclonal antilectin antibodies. That these cell surface lectins are functional was demonstrated by the ability of the galactose-terminating asialofetuin to enhance cell aggregation and of asialofetuin glycopeptides to block this homotypic aggregation as well as to suppress cell attachment to substratum, and by the inhibition of both asialofetuin-induced cell aggregation and cell attachment to substratum by the binding of monoclonal antilectin antibodies to the cell surface. These findings implicate cell surface lectins as mediators of cell-cell and cell-substratum adhesion. Some of these cellular interactions might be important determinants of tumor cell growth and metastasis.  相似文献   

6.
Tunicamycin acts on cell aggregation in Dictyostelium discoideum by changing cell movement and by inhibiting the EDTA-stable type of intercellular adhesion. Tunicamycin-treated cells show unco-ordinated pseudopodial activity such that pseudopods are simultaneously extended from all parts of the cell surface, and the cells are unable to move in straight paths. Concurrent with the inhibition of formation of EDTA-stable contacts, N-glycosylation of a glycoprotein specific for aggregation-competent cells is inhibited. This glycoprotein, previously called contact site A, has an apparent mol. wt. of 80 kilodaltons (kd). In membranes of tunicamycin-treated cells, two components are detected that react with certain monoclonal antibodies against contact sites A: one component of 66 kd, the other of 53 kd apparent mol. wt. Another group of monoclonal antibodies reacts only with the 80-kd glycoprotein and the 66-kd component. These results are in accord with the assumption that the glycoprotein carries two carbohydrate chains, and that the antibodies differ in their requirement for glycosylation of the antigen. Despite the coincidence between blockage of EDTA-stable cell adhesion and inhibited glycosylation of contact sites A, direct involvement of the carbohydrate moieties of this glycoprotein in intercellular adhesion seems questionable. EDTA-stable cell adhesion has not been blocked by Fab fragments from antibodies that specifically react with the glycosylated protein.  相似文献   

7.
Identification of a putative cell adhesion domain of uvomorulin.   总被引:41,自引:4,他引:37       下载免费PDF全文
D Vestweber  R Kemler 《The EMBO journal》1985,4(13A):3393-3398
A rat monoclonal antibody (DECMA-1) selected against the murine cell adhesion molecule uvomorulin blocks both the aggregation of mouse embryonal carcinoma cells and the compaction of pre-implantation embryos. However, decompacted embryos eventually become recompacted in the presence of DECMA-1 and form blastocysts composed of both trophectoderm and inner cell mass. DECMA-1 also disrupts confluent monolayers of Madin-Darby canine kidney (MDCK) epithelial cells. DECMA-1 recognizes uvomorulin in extracts from mouse and dog tissues. Protease digestion of mouse and dog uvomorulin generated core fragments including one of 26 kd which reacted with DECMA-1. The same 26-kd fragment is recognized by anti-uvomorulin monoclonal antibodies which have been obtained from other laboratories and which dissociate MDCK cell monolayers and block the formation of the epithelial occluding barrier. This 26-kd fragment therefore seems to be involved in the adhesive function of uvomorulin.  相似文献   

8.
To establish a procedure for the purification of a broad spectrum of cell surface proteins, three separate methods based on different principles were compared with the aid of four marker proteins. Membrane preparation by sedimentation-flotation centrifugation, temperature-induced phase separation with Triton X-114, and lectin affinity chromatography were used separately as well as in combination. The two-step procedure of membrane preparation and lectin affinity chromatography provided by far the best enrichment of cell surface marker proteins. This result was further substantiated by screening greater than 6,600 hybridoma cultures that originated from mice that had been immunized with protein fractions obtained by different purification protocols. In addition, it was found that solubilized glycoproteins used as immunogens led to many more cell surface-specific monoclonal antibodies than glycoproteins immobilized on lectin-agarose beads. Three monoclonal antibodies that recognize distinct epitopes of cell adhesion molecules (CAMs) were isolated. Monoclonal antibody C4 bound to a detergent-labile epitope of G4 (neuron-glia CAM). Monoclonal antibody D1 recognized specifically nonreduced neural CAM (N-CAM) with intact disulfide bridges, and monoclonal antibody D3 recognized only the 180-kilodalton isoform of N-CAM. Because of these specificities, these monoclonal antibodies promise to be useful tools for the elucidation of the structural organization of adhesion molecules.  相似文献   

9.
Using monoclonal antibody technology and affinity chromatography we have identified four distinct classes of cell surface receptors for native collagen on a cultured human fibrosarcoma cell line, HT-1080. Two classes of monoclonal antibodies prepared against HT-1080 cells inhibited adhesion to extracellular matrix components. Class I antibodies inhibited cell adhesion to collagen, fibronectin, and laminin. These antibodies immunoprecipitated two noncovalently linked proteins (subunits) with molecular masses of 147 and 125 kD, termed alpha and beta, respectively. Class II antibodies inhibited cell adhesion to native collagen only and not fibronectin or laminin. Class II antibodies immunoprecipitated a single cell surface protein containing two noncovalently linked subunits with molecular masses of 145 and 125 kD, termed alpha and beta, respectively. The two classes of antibodies did not cross-react with the same cell surface protein and recognized epitopes present on the alpha subunits. Pulse-chase labeling studies with [35S]methionine indicated that neither class I nor II antigen was a metabolic precursor of the other. Comparison of the alpha and beta subunits of the class I and II antigens by peptide mapping indicated that the beta subunits were identical while the alpha subunits were distinct. In affinity chromatography experiments HT-1080 cells were extracted with Triton X-100 or octylglucoside detergents and chromatographed on insoluble fibronectin or native type I or VI collagens. A single membrane protein with the biochemical characteristics of the class I antigen was isolated on fibronectin-Sepharose and could be immunoprecipitated with the class I monoclonal antibody. The class I antigen also specifically bound to type I and VI collagens, consistent with the observation that the class I antibodies inhibit cell adhesion to types VI and I collagen and fibronectin. The class II antigen, however, did not bind to collagen (or fibronectin) even though class II monoclonal antibodies completely inhibited adhesion of HT-1080 cells to types I and III-VI collagen. The class I beta and II beta subunits were structurally related to the beta subunit of the fibronectin receptor described by others. However, none of these receptors shared the same alpha subunits. Additional membrane glycoprotein(s) with molecular mass ranges of 80-90 and 35-45 kD, termed the class III and IV receptors, respectively, bound to types I and VI collagen but not to fibronectin. Monoclonal antibodies prepared against the class III receptor had no consistent effect on cell attachment or spreading, suggesting that it is not directly involved in adhesion to collagen-coated substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Cell adhesion molecules: detection with univalent second antibody   总被引:10,自引:2,他引:8       下载免费PDF全文
Identification of cell surface molecules that play a role in cell-cell adhesion (here called cell adhesion molecules) has been achieved by demonstrating the inhibitory effect of univalent antibodies that bind these molecules in an in vitro assay of cell-cell adhesion. A more convenient reagent, intact (divalent) antibody, has been avoided because it might agglutinate the cells rather than blocking cell-cell adhesion. In this report, we show that intact rabbit immunoglobulin directed against certain cell surface molecules of Dictyostelium discoideum blocks cell-cell adhesion when the in vitro assay is performed in the presence of univalent goat anti-rabbit antibody. Under appropriate experimental conditions, the univalent second antibody blocks agglutination induced by the rabbit antibody without significantly interfering with its effect on cell-cell adhesion. This method promises to be useful for screening monoclonal antibodies raised against potential cell adhesion molecules because: (a) it allows for the screening of large numbers of antibody samples without preparation of univalent fragments; and (b) it requires much less antibody because of the greater affinity of divalent antibodies for antigens.  相似文献   

11.
A functional assay has been developed to identify cell surface proteins involved in the formation of epithelial tight junctions. Transepithelial electrical resistance was used to measure the presence of intact tight junctions in monolayers of Madin-Darby canine kidney (MDCK) cells cultured on nitrocellulose filters. The strain I MDCK cells used have a transmonolayer resistance greater than 2,000 ohm . cm2. When the monolayers were incubated at 37 degrees C without Ca2+, the intercellular junctions opened and the transmonolayer resistance dropped to the value of a bare filter, i.e., less than 40 ohm . cm2. When Ca2+ was restored, the cell junctions resealed and the resistance recovered rapidly. Polyclonal antibodies raised against intact MDCK cells inhibited the Ca2+-dependent recovery of electrical resistance when applied to monolayers that had been opened by Ca2+ removal. Cross-linking of cell surface molecules was not required because monovalent Fab' fragments also inhibited. In contrast, a variety of other antibodies that recognize specific proteins on the MDCK cell surface failed to inhibit the recovery of resistance. Monoclonal antibodies have been raised and screened for their ability to inhibit resistance recovery. One such monoclonal antibody has been obtained that stained the lateral surface of MDCK cells. This antibody, rr1, recognized a 118-kD polypeptide in MDCK cell extracts and an 81-kD fragment released from the cell surface by trypsinization in the presence of Ca2+. Sequential immunoprecipitation with antibody rr1 and a monoclonal antibody to uvomorulin showed that this polypeptide is related to uvomorulin. The role of uvomorulin-like and liver cell adhesion molecule (L-CAM)-like polypeptides in the establishment of the epithelial occluding barrier is discussed.  相似文献   

12.
The neural cell adhesion molecule NCAM is capable of mediating cell-cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM-covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell-cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP-epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction.  相似文献   

13.
Osteopontin (OPN) is a secreted protein that has been implicated in diverse physiological and pathological processes. OPN can bind to integrins, via GRGDS or SVVYGLR amino acid sequences, and to other cell surface receptors, and many of OPN's functions are likely mediated via cell adhesion and subsequent signaling. Here we developed and characterized a series of five monoclonal antibodies, raised to distinct internal peptide sequences of human OPN, and have used these sequence-specific reagents, along with the previously described anti-OPN monoclonal antibody mAb53, to map functional epitopes of OPN that are important to cell adhesion and migration. All antibodies were reactive with native as well as recombinant human OPN. One antibody (2K1) raised against the peptide VDTYDGRGDSVVYGLRS could inhibit RGD-dependent cell binding to OPN, with an efficacy comparable to that of mAb53. Furthermore, 2K1 could inhibit alpha9 integrin-dependent cell binding to OPN. The epitope recognized by 2K1 was not destroyed by thrombin digestion, whereas mAb53 has been shown to be unable to react with OPN following thrombin cleavage. The two distinct epitopes defined by 2K1 and mAb53 antibodies are closely related to the SVVYGLR cell-binding domain and the GLRSKS containing thrombin cleavage site, respectively, and are involved in cell binding and cell migration.  相似文献   

14.

Background

Accurate detection and analysis of circulating tumor cells plays an important role in the diagnosis and treatment of metastatic cancer treatment.

Methods and Findings

A cell microarray chip was used to detect spiked carcinoma cells among leukocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth), was made from polystyrene; and the formation of monolayers of leukocytes in the microchambers was observed. Cultured human T lymphoblastoid leukemia (CCRF-CEM) cells were used to examine the potential of the cell microarray chip for the detection of spiked carcinoma cells. A T lymphoblastoid leukemia suspension was dispersed on the chip surface, followed by 15 min standing to allow the leukocytes to settle down into the microchambers. Approximately 29 leukocytes were found in each microchamber when about 600,000 leukocytes in total were dispersed onto a cell microarray chip. Similarly, when leukocytes isolated from human whole blood were used, approximately 89 leukocytes entered each microchamber when about 1,800,000 leukocytes in total were placed onto the cell microarray chip. After washing the chip surface, PE-labeled anti-cytokeratin monoclonal antibody and APC-labeled anti-CD326 (EpCAM) monoclonal antibody solution were dispersed onto the chip surface and allowed to react for 15 min; and then a microarray scanner was employed to detect any fluorescence-positive cells within 20 min. In the experiments using spiked carcinoma cells (NCI-H1650, 0.01 to 0.0001%), accurate detection of carcinoma cells was achieved with PE-labeled anti-cytokeratin monoclonal antibody. Furthermore, verification of carcinoma cells in the microchambers was performed by double staining with the above monoclonal antibodies.

Conclusion

The potential application of the cell microarray chip for the detection of CTCs was shown, thus demonstrating accurate detection by double staining for cytokeratin and EpCAM at the single carcinoma cell level.  相似文献   

15.
In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (≈50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the pathogenesis of spirochetal infection.  相似文献   

16.
Profiling of the tetraspanin web of human colon cancer cells   总被引:1,自引:0,他引:1  
Tetraspanins are integral membrane proteins involved in a variety of physiological and pathological processes. In cancer, clinical and experimental studies have reported a link between tetraspanin expression levels and metastasis. Tetraspanins play a role as organizers of multimolecular complexes in the plasma membrane. Indeed each tetraspanin associates specifically with one or a few other membrane proteins forming primary complexes. Thus, tetraspanin-tetraspanin associations lead to a molecular network of interactions, the "tetraspanin web." We performed a proteomic characterization of the tetraspanin web using a model of human colon cancer consisting of three cell lines derived from the primary tumor and two metastases (hepatic and peritoneal) from the same patient. The tetraspanin complexes were isolated after immunoaffinity purification using monoclonal antibodies directed against the tetraspanin CD9, and the associated proteins were separated by SDS-PAGE and identified by mass spectrometry using LC-MS/MS. This allowed the identification of 32 proteins including adhesion molecules (integrins, proteins with Ig domains, CD44, and epithelial cell adhesion molecule) (EpCAM), membrane proteases (ADAM10, TADG-15, and CD26/dipeptidyl peptidase IV), and signaling proteins (heterotrimeric G proteins). Importantly some components were differentially detected in the tetraspanin web of the three cell lines: the laminin receptor Lutheran/B-cell adhesion molecule (Lu/B-CAM) was expressed only on the primary tumor cells, whereas CD26/dipeptidyl peptidase IV and tetraspanin Co-029 were observed only on metastatic cells. Concerning Co-029, immunohistofluorescence showed a high expression of Co-029 on epithelial cells in normal colon and a lower expression in tumors, whereas heterogeneity in terms of expression level was observed on metastasis. Finally we demonstrated that epithelial cell adhesion molecule and CD9 form a new primary complex in the tetraspanin web.  相似文献   

17.
18.
The cell adhesion and neurite outgrowth-promoting function of acetylcholinesterase has been localised to the area of the peripheral anionic site. In order to precisely determine the site involved, we used synthetic peptides representing sequences of the peripheral anionic site and its surrounds, and investigated their binding to a panel of monoclonal antibodies that inhibit cell adhesion/neurite outgrowth and/or to recognise the peripheral anionic site. Binding to laminin-1 and collagen IV was also investigated. A relationship between recognition of the sequence 37-50, representing a surface loop adjacent to the peripheral anionic site, and the degree of inhibition of cell adhesion was observed; both laminin-1 and collagen IV also bound this loop with high affinity. Neurite outgrowth on coverslips coated with this peptide was similar to those coated with acetylcholinesterase itself. Adhesion-inhibiting antibodies also recognised the omega loop 69-96, as did laminin-1 and collagen IV. Laminin also bound the sequences 55-66 and 340-353, recognised by the antibodies to varying degrees, but collagen did not. All these peptides were able to promote neurite outgrowth to some degree. No binding to the amyloid-binding omega loop 275-304 by the ligands was observed, nor did the antibodies recognise this consistently. No relationship was observed between the degree of inhibition of acetylcholinesterase and inhibition of neurite outgrowth by the antibodies from which we conclude that the neurite outgrowth function is non-cholinergic. In conclusion, we have identified a specific conformational structure on acetylcholinesterase, comprising adjacent surface loops between residues 37-50 and 69-96, with additional involvement of the sequences 55-66 and 340-353, that mediates cell adhesion and neurite outgrowth.  相似文献   

19.
A grating coupler was used for the on-line determination of monoclonal antibodies produced in perfused animal cell bioreactor. The device was connected with the culture vessel via a flow-injection analysis (FIA) system, which was controlled automatically. Specific antimouse lgG antibodies were immobilized on the surface of the sensor-chip. After injection of the sample, the binding of mouse lgG was observed in real time. The regeneration of the binding sites of the immobilized antibodies using an acidic solution allowed the on-line detection of produced monoclonal antibodies in the range of 10 to 150 mug/mL. In contrast to other techniques coupled to bioprocesses, the developed method represents a regenerable direct immunosensor. Results were compared with standard ELISA techniques (off-line) and a competitive immunochemical assay using the grating coupler (off-line). (c) 1993 John Wiley & Sons, Inc.  相似文献   

20.
《The Journal of cell biology》1987,105(4):1893-1899
A monoclonal antibody to the myelin-associated glycoprotein (MAG) was prepared and characterized to probe for the involvement of MAG in cell surface interactions among neural cells in vitro. The antibody reacts specifically with oligodendrocyte cell surface and myelin-rich brain regions as expected from previous investigations. Not all O4 antigen- positive oligodendrocytes express MAG in vitro. Fab fragments of the antibody interfere with neuron to oligodendrocyte and oligodendrocyte to oligodendrocyte adhesion, but not with oligodendrocyte to astrocyte adhesion. MAG-containing liposomes bind to the cell surfaces of the appropriate target cells by a mechanism that is specifically inhibitable by Fab fragments of monoclonal MAG antibodies, demonstrating that MAG is a neural cell adhesion molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号