首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Eukaryotic translation initiation factor eIF4A is a DEAD-box helicase that resolves secondary structure elements in the 5''-UTR of mRNAs during ribosome scanning. Its RNA-stimulated ATPase and ATP-dependent helicase activities are enhanced by other translation initiation factors, but the underlying mechanisms are unclear. DEAD-box proteins alternate between open and closed conformations during RNA unwinding. The transition to the closed conformation is linked to duplex destabilization. eIF4A is a special DEAD-box protein that can adopt three different conformations, an open state in the absence of ligands, a half-open state stabilized by the translation initiation factor eIF4G and a closed state in the presence of eIF4G and eIF4B. We show here that eIF4A alone does not measurably sample the closed conformation. The translation initiation factors eIF4B and eIF4G accelerate the eIF4A conformational cycle. eIF4G increases the rate of closing more than the opening rate, and eIF4B selectively increases the closing rate. Strikingly, the rate constants and the effect of eIF4B are different for different RNAs, and are related to the presence of single-stranded regions. Modulating the kinetics of the eIF4A conformational cycle is thus central for the multi-layered regulation of its activity, and for its role as a regulatory hub in translation initiation.  相似文献   

2.
The eukaryotic initiation factor eIF4G is a large modular protein which serves as a docking site for initiation factors and proteins involved in RNA translation. Together with eIF4E and eIF4A, eIF4G constitutes the eIF4F complex which is a key component in promoting ribosome binding to the mRNA. Thus, the central role of eIF4G in initiation makes it a valid target for events aimed at modulating translation. Such events occur during viral infection by picornaviruses and lentiviruses and result in the hijack of the translational machinery through cleavage of eIF4G. Proteolysis of eIF4G is also mediated by caspases during the onset of apoptosis causing inhibition of protein synthesis. We will review the role of eIF4G and protein partners as well as the cellular and viral events that modulate eIF4G activity in the initiation of translation.  相似文献   

3.
4.
A translation initiation factor, eIF4E, of Xenopus laevis was purified by affinity column chromatography after the gene expression as a full-length protein in a baculovirus-insect cell system. Interaction between X. laevis eIF4E and 4E-BP2 was analyzed by affinity column chromatography, gel permeation chromatography (GPC), and surface plasmon resonance (SPR). It was found that the interaction of eIF4E with an mRNA cap-analogue enhanced the binding activity of eIF4E with 4E-BP2. Furthermore, the SPR analysis showed that the eIF4E-cap-analogue interaction was very weak regardless of complex formation of 4E-BP2 with eIF4E; the dissociation constant of eIF4E for the cap-analogue was estimated to be 10(-2)-10(-4) M. These results suggest that the participation of another initiation factor is required for eIF4E to recognize the cap structure in vivo. The results reported in this paper support "the performed complex model" of Lee et al., in which eIF4E binds to the mRNA cap structure after the initiation factors have formed the initiation complex eIF4F.  相似文献   

5.
Two classes of viruses, namely members of the Potyviridae and Caliciviridae, use a novel mechanism for the initiation of protein synthesis that involves the interaction of translation initiation factors with a viral protein covalently linked to the viral RNA, known as VPg. The calicivirus VPg proteins can interact directly with the initiation factors eIF4E and eIF3. Translation initiation on feline calicivirus (FCV) RNA requires eIF4E because it is inhibited by recombinant 4E-BP1. However, to date, there have been no functional studies carried out with respect to norovirus translation initiation, because of a lack of a suitable source of VPg-linked viral RNA. We have now used the recently identified murine norovirus (MNV) as a model system for norovirus translation and have extended our previous studies with FCV RNA to examine the role of the other eIF4F components in translation initiation. We now demonstrate that, as with FCV, MNV VPg interacts directly with eIF4E, although, unlike FCV RNA, translation of MNV RNA is not sensitive to 4E-BP1, eIF4E depletion, or foot-and-mouth disease virus Lb protease-mediated cleavage of eIF4G. We also demonstrate that both FCV and MNV RNA translation require the RNA helicase component of the eIF4F complex, namely eIF4A, because translation was sensitive (albeit to different degrees) to a dominant negative form and to a small molecule inhibitor of eIF4A (hippuristanol). These results suggest that calicivirus RNAs differ with respect to their requirements for the components of the eIF4F translation initiation complex.  相似文献   

6.
The question of whether translation initiation factor eIF4E and the complete eIF4G polypeptide are required for initiation dependent on the IRES (internal ribosome entry site) of hepatitis A virus (HAV) has been examined using in vitro translation in standard and eIF4G-depleted rabbit reticulocyte lysates. In agreement with previous publications, the HAV IRES is unique among all picornavirus IRESs in that it was inhibited if translation initiation factor eIF4G was cleaved by foot-and-mouth disease L-proteases. In addition, the HAV IRES was inhibited by addition of eIF4E-binding protein 1, which binds tightly to eIF4E and sequesters it, thus preventing its association with eIF4G. The HAV IRES was also inhibited by addition of m(7)GpppG cap analogue, irrespective of whether the RNA tested was capped or not. Thus, initiation on the HAV IRES requires that eIF4E be associated with eIF4G and that the cap-binding pocket of eIF4E be empty and unoccupied. This suggests two alternative models: (i) initiation requires a direct interaction between an internal site in the IRES and eIF4E/4G, an interaction which involves the cap-binding pocket of eIF4E in addition to any direct eIF4G-RNA interactions; or (ii) it requires eIF4G in a particular conformation which can be attained only if eIF4E is bound to it, with the cap-binding pocket of the eIF4E unoccupied.  相似文献   

7.
Eukaryotic initiation factor (eIF) 4A is a DEAD-box helicase that stimulates translation initiation by unwinding mRNA secondary structure. The accessory proteins eIF4G, eIF4B, and eIF4H enhance the duplex unwinding activity of eIF4A, but the extent to which they modulate eIF4A activity is poorly understood. Here, we use real-time fluorescence assays to determine the kinetic parameters of duplex unwinding and ATP hydrolysis by these initiation factors. To ensure efficient duplex unwinding, eIF4B and eIF4G cooperatively activate the duplex unwinding activity of eIF4A. Our data reveal that eIF4H is much less efficient at stimulating eIF4A unwinding activity than eIF4B, implying that eIF4H is not able to completely substitute for eIF4B in duplex unwinding. By monitoring unwinding and ATPase assays under identical conditions, we demonstrate that eIF4B couples the ATP hydrolysis cycle of eIF4A with strand separation, thereby minimizing nonproductive unwinding events. Using duplex substrates with altered GC contents but similar predicted thermal stabilities, we further show that the rate of formation of productive unwinding complexes is strongly influenced by the local stability per base pair, in addition to the stability of the entire duplex. This finding explains how a change in the GC content of a hairpin is able to influence translation initiation while maintaining the overall predicted thermal stability.  相似文献   

8.
Cap-independent translation initiation in Xenopus oocytes.   总被引:2,自引:0,他引:2       下载免费PDF全文
Eukaryotic cellular mRNAs contain a cap at their 5'-ends, but some viral and cellular mRNAs bypass the cap-dependent mechanism of translation initiation in favor of internal entry of ribosomes at specific RNA sequences. Cap-dependent initiation requires intact initiation factor eIF4G (formerly eIF-4gamma, eIF-4Fgamma or p220), whereas internal initiation can proceed with eIF4G cleaved by picornaviral 2A or L proteases. Injection of recombinant coxsackievirus B4 protease 2A into Xenopus oocytes led to complete cleavage of endogenous eIF4G, but protein synthesis decreased by only 35%. Co-injection of edeine reduced synthesis by >90%, indicating that eIF4G-independent synthesis involved ongoing initiation. The spectrum of endogenous proteins synthesized was very similar in the presence or absence of intact eIF4G. Translation of exogenous rabbit globin mRNA, by contrast, was drastically inhibited by eIF4G cleavage. The N-terminal cleavage product of eIF4G (cpN), which binds eIF4E, was completely degraded within 6-12 h, while the C-terminal cleavage product (cpC), which binds to eIF3 and eIF4A, was more stable over the same period. Thus, translation initiation of most endogenous mRNAs inXenopusoocytes requires no eIF4G, or perhaps only cpC, suggesting a cap-independent mechanism.  相似文献   

9.
Eukaryotic initiation factor (eIF) 4G is an integral member of the translation initiation machinery. The molecule serves as a scaffold for several other initiation factors, including eIF4E, eIF4AI, the eIF3 complex, and poly(A)-binding protein (PABP). Previous work indicates that complexes between these proteins exhibit enhanced mRNA cap-binding and RNA helicase activities relative to the respective individual proteins, eIF4E and eIF4A. The eIF4G-PABP interaction has been implicated in enhancing the formation of 48 S and 80 S initiation complexes and ribosome recycling through mRNA circularization. The eIF3-eIF4GI interaction is believed to forge the link between the 40 S subunit and the mRNA. Here we have investigated the behavior in vitro and in intact cells of eIF4GIf molecules lacking either the PABP-binding site, the eIF3-binding site, the middle domain eIF4A-binding site, or the C-terminal segment that includes the second eIF4A-binding site. Although in some cases the mutant forms were recruited more slowly, all of these eIF4G variants could form complexes with eIF4E, enter 48 S complexes and polysomes in vivo and in vitro, and partially rescue translation in cells targeted with eIF4GI short interfering RNA. In the reticulocyte lysate, eIF4G unable to interact directly with PABP showed little impairment in its ability to support translation, whereas loss of either of the eIF4A-binding sites or the eIF3-binding site resulted in a marked decrease in activity. We conclude that there is considerable redundancy in the mechanisms forming initiation complexes in mammalian cells, such that many individual interactions have regulatory rather than essential roles.  相似文献   

10.
In recent years, biotechnology has permitted regulation of the expression of endogenous plant genes to improve agronomlcally important traits. Genetic modification of crops has benefited from emerging knowledge of new genes, especially genes that exhibit novel functions, one of which is eukaryotlc initiation factor 4E (eIF4E). eIF4E Is one of the most important translation initiation factors Involved in eukaryotic initiation. Recent research has demonstrated that virus resistance mediated by eIF4E and Its isoform elf (Iso)4E occurs in several plant-virus interactions, thus indicating a potential new role for eIF4E/elF(Iso)4E In resistance strategies against plant viruses. In this review, we briefly describe eIF4E activity In plant translation, its potential role, and functions of the eIF4E subfamily In plant-virus interactions. Other initiation factors such as elF4G could also play a role In plant resistance against viruses. Finally, the potential for developing eIF4E-mediated resistance to plant viruses in the future Is discussed. Future research should focus on elucidation of the resistance mechanism and spectrum mediated by eIF4E. Knowledge of a particu- lar plant-virus interaction will help to deepen our understanding of eIF4E and other eukaryotic Initiation factors, and their involvement in virus disease control.  相似文献   

11.
Translation initiation in eukaryotes is accomplished through the coordinated and orderly action of a large number of proteins, including the eIF4 initiation factors. Herein, we report that pateamine A (PatA), a potent antiproliferative and proapoptotic marine natural product, inhibits cap-dependent eukaryotic translation initiation. PatA bound to and enhanced the intrinsic enzymatic activities of eIF4A, yet it inhibited eIF4A-eIF4G association and promoted the formation of a stable ternary complex between eIF4A and eIF4B. These changes in eIF4A affinity for its partner proteins upon binding to PatA caused the stalling of initiation complexes on mRNA in vitro and induced stress granule formation in vivo. These results suggest that PatA will be a valuable molecular probe for future studies of eukaryotic translation initiation and may serve as a lead compound for the development of anticancer agents.  相似文献   

12.
M Altmann  N Schmitz  C Berset    H Trachsel 《The EMBO journal》1997,16(5):1114-1121
In the yeast Saccharomyces cerevisiae a small protein named p20 is found associated with translation initiation factor eIF4E, the mRNA cap-binding protein. We demonstrate here that p20 is a repressor of cap-dependent translation initiation. p20 shows amino acid sequence homology to a region of eIF4G, the large subunit of the cap-binding protein complex eIF4F, which carries the binding site for eIF4E. Both, eIF4G and p20 bind to eIF4E and compete with each other for binding to eIF4E. The eIF4E-p20 complex can bind to the cap structure and inhibit cap-dependent but not cap-independent translation initiation: the translation of a mRNA with the 67 nucleotide omega sequence of tobacco mosaic virus in its 5' untranslated region (which was previously shown to render translation cap-independent) is not inhibited by p20. Whereas the translation of the same mRNA lacking the omega sequence is strongly inhibited by p20. Disruption of CAF20, the gene encoding p20, stimulates the growth of yeast cells, overexpression of p20 causes slower growth of yeast cells. These results show that p20 is a regulator of eIF4E activity which represses cap-dependent initiation of translation by interfering with the interaction of eIF4E with eIF4G, e.g. the formation of the eIF4F-complex.  相似文献   

13.
Eukaryotic translation is initiated following binding of ribosomes either to the capped 5' end of an mRNA or to an internal ribosomal entry site (IRES) within its 5' nontranslated region. These processes are both mediated by eukaryotic initiation factor 4F (eIF4F), which consists of eIF4A (helicase), eIF4E (cap-binding protein), and eIF4G subunits. Here we present a functional analysis of eIF4F which defines the subunits and subunit domains necessary for its function in initiation mediated by the prototypical IRES element of encephalomyocarditis virus. In an initiation reaction reconstituted in vitro from purified translation components and lacking eIF4A and -4F, IRES-mediated initiation did not require the cap-binding protein eIF4E but was absolutely dependent on eIF4A and the central third of eIF4G. This central domain of eIF4G bound strongly and specifically to a structural element within the encephalomyocarditis virus IRES upstream of the initiation codon in an ATP-independent manner and with the same specificity as eIF4F. The carboxy-terminal third of eIF4G did not bind to the IRES. The central domain of eIF4G was itself UV cross-linked to the IRES and strongly stimulated UV cross-linking of eIF4A to the IRES in conjunction with either eIF4B or with the carboxy-terminal third of eIF4G.  相似文献   

14.
Potyvirus RNA contains at the 5' end a covalently linked virus-encoded protein VPg, which is required for virus infectivity. This role has been attributed to VPg interaction with the eukaryotic translation initiation factor eIF4E, a cap-binding protein. We characterized the dissociation constants for the interaction of the potato virus Y VPg with different plant eIF4Es and its isoforms and mapped the eIF(iso)4E attachment region on VPg. VPg/eIF4E interaction results in the inhibition of cell-free protein synthesis, and we show that it stems from the liberation of the cap moiety from the complex with eIF4E. Since VPg does not attach the cap, it appears that VPg induces changes in the eIF4E structure, diminishing its affinity to the cap. We show here that the initiation complex scaffold protein eIF(iso)4G increases VPg interaction with eIF(iso)4E. These data together suggest similar cap and VPg interactions with eIF4E and characterize VPg as a novel eIF4E-binding protein, which inhibits host protein synthesis at a very early stage of the initiation complex formation through the inhibition of cap attachment to the initiation factor eIF4E.  相似文献   

15.
The eukaryotic mRNA 3' poly(A) tail and the 5' cap cooperate to synergistically enhance translation. This interaction is mediated by a ribonucleoprotein network that contains, at a minimum, the poly(A) binding protein (PABP), the capbinding protein eIF4E and a scaffolding protein, eIF4G. eIF4G, in turn, contains binding sites for eIF4A and eIF3, a 40S ribosome-associated initiation factor. The combined cooperative interactions within this "closed loop" mRNP among other effects enhance the affinity of eIF4E for the 5' cap by lowering its dissociation rate and, ultimately, facilitate the formation of 48S and 80S ribosome initiation complexes. The PABP-poly(A) interaction also stimulates initiation driven by picomavirus' internal ribosomal entry sites (IRESs), a process that requires eIF4G but not eIF4E. PABP, therefore, should be considered a canonical initiation factor, integral to initiation complex formation. Poly(A)-mediated translation is subjected to regulation by the PABP-interacting proteins Paip1 and Paip2. Paip1 acts as a translational enhancer. In contrast, Paip2 strongly inhibits translation by promoting dissociation of PABP from poly(A) and by competing with eIF4G for binding to PABP.  相似文献   

16.
Mir MA  Panganiban AT 《The EMBO journal》2008,27(23):3129-3139
The eIF4F cap-binding complex mediates the initiation of cellular mRNA translation. eIF4F is composed of eIF4E, which binds to the mRNA cap, eIF4G, which indirectly links the mRNA cap with the 43S pre-initiation complex, and eIF4A, which is a helicase necessary for initiation. Viral nucleocapsid proteins (N) function in both genome replication and RNA encapsidation. Surprisingly, we find that hantavirus N has multiple intrinsic activities that mimic and substitute for each of the three peptides of the cap-binding complex thereby enhancing the translation of viral mRNA. N binds with high affinity to the mRNA cap replacing eIF4E. N binds directly to the 43S pre-initiation complex facilitating loading of ribosomes onto capped mRNA functionally replacing eIF4G. Finally, N obviates the requirement for the helicase, eIF4A. The expression of a multifaceted viral protein that functionally supplants the cellular cap-binding complex is a unique strategy for viral mRNA translation initiation. The ability of N to directly mediate translation initiation would ensure the efficient translation of viral mRNA.  相似文献   

17.
The strategies developed by internal ribosome entry site (IRES) elements to recruit the translational machinery are poorly understood. In this study we show that protein-RNA interaction of the eIF4G translation initiation factor with sequences of the foot-and-mouth disease virus (FMDV) IRES is a key determinant of internal translation initiation in living cells. Moreover, we have identified the nucleotides required for eIF4G-RNA functional interaction, using native proteins from FMDV-susceptible cell extracts. Substitutions in the conserved internal AA loop of the base of domain 4 led to strong impairment of both eIF4G-RNA interaction in vitro and IRES-dependent translation initiation in vivo. Conversely, substitutions in the vicinity of the internal AA loop that did not impair IRES activity retained their ability to interact with eIF4G. Direct UV-crosslinking as well as competition assays indicated that domains 1-2, 3, and 5 of the IRES did not contribute to this interaction. In agreement with this, binding to domain 4 alone was as efficient as to the full-length IRES. The C-terminal fragment of eIF4G, proteolytically processed by the FMDV Lb protease, was sufficient to interact with the IRES or to its domain 4 alone. Additionally, we show here that binding of the eIF4B initiation factor to the IRES required domain 5 sequences. Moreover, eIF4G-IRES interaction was detected in the absence of eIF4B-IRES binding, suggesting that both initiation factors interact with the 3' region of the IRES but use different residues. The strong correlation found between eIF4G-RNA interaction and IRES activity in transfected cells suggests that eIF4G acts as a linker to recruit the translational machinery in IRES-dependent initiation.  相似文献   

18.
The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF4B copurifies with eIF3 and eIF4F through several purification steps, suggesting the involvement of a multisubunit complex during translation initiation. To understand the mechanism by which eIF4B promotes 40S ribosome binding to the mRNA, we studied its interactions with partner proteins by using a filter overlay (protein-protein [far Western]) assay and the two-hybrid system. In this report, we show that eIF4B self-associates and also interacts directly with the p170 subunit of eIF3. A region rich in aspartic acid, arginine, tyrosine, and glycine, termed the DRYG domain, is sufficient for self-association of eIF4B, both in vitro and in vivo, and for interaction with the p170 subunit of eIF3. These experiments suggest that eIF4B participates in mRNA-ribosome binding by acting as an intermediary between the mRNA and eIF3, via a direct interaction with the p170 subunit of eIF3.  相似文献   

19.
Translation initiation factor 4E (eIF4E) is a cytoplasmic cap-binding protein that is required for cap-dependent translation initiation. Here, we have shown that eIF4E is ubiquitinated primarily at Lys-159 and incubation of cells with a proteasome inhibitor leads to increased eIF4E levels, suggesting the proteasome-dependent proteolysis of ubiquitinated eIF4E. Ubiquitinated eIF4E retained its cap binding ability, whereas eIF4E phosphorylation and eIF4G binding were reduced by ubiquitination. The W73A mutant of eIF4E exhibited enhanced ubiquitination/degradation, and 4E-BP overexpression protected eIF4E from ubiquitination/degradation. Because heat shock or the expression of the carboxyl terminus of heat shock cognate protein 70-interacting protein (Chip) dramatically increased eIF4E ubiquitination, Chip may be at least one ubiquitin E3 ligase responsible for eIF4E ubiquitination.  相似文献   

20.
Translation of picornavirus RNA is initiated after ribosomal binding to an internal ribosomal entry site (IRES) within the 5' untranslated region. We have reconstituted IRES-mediated initiation on encephalomyocarditis virus RNA from purified components and used primer extension analysis to confirm the fidelity of 48S preinitiation complex formation. Eukaryotic initiation factor 2 (eIF2), eIF3, and eIF4F were required for initiation; eIF4B and to a lesser extent the pyrimidine tract-binding protein stimulated this process. We show that eIF4F binds to the IRES in a novel cap-independent manner and suggest that cap- and IRES-dependent initiation mechanisms utilize different modes of interaction with this factor to promote ribosomal attachment to mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号