首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermostable β-glucosidase (BGLI) was purified from Thermoascus aurantiacus IFO9748, and the gene (bgl1) encoding this enzyme was cloned and expressed in yeast Pichia pastoris. The deduced amino acid sequence encoded by bgl1 showed high similarity with the sequence of glycoside hydrolase family 3. The recombinant enzyme was purified and subjected to enzymatic characterization. Recombinant BGLI retained more than 70% of its initial activity after 1 h of incubation at 60°C and was stable in the pH range 3–8. The optimal temperature for enzyme activity was about 70°C and the optimal pH was about 5. P. pastoris expressing recombinant BGLI became able to utilize cellobiose as a carbon source.  相似文献   

2.
里氏木霉纤维二糖水解酶Ⅱ在毕赤酵母中的高效表达   总被引:16,自引:0,他引:16  
本工作采用巴氏毕赤酵母Pichiapastoris表达系统进行了里氏木霉Trichodermareesei纤维二糖水解酶Ⅱ(CellobiohydrolaseII)的表达。用RT-PCR的方法从经稻草粉诱导的里氏木霉培养物中分离出纤维二糖水解酶Ⅱ的基因,将其插入到巴氏毕赤酵母的表达载体pPICZαA中,并使之处于α-因子信号肽序列的下游,得到重组质粒pPICZαA-cbh2。通过电穿孔的方法用线性化的pPICZαA-cbh2转化巴氏毕赤酵母GS115菌株,经过大量筛选后得到可以高效表达纤维二糖水解酶的毕赤酵母菌株P.pastorisCBHⅡ1。在甲醇诱导的条件下培养P.pastorisCBHⅡ1,培养液中的CMC活性可达到3.82U/mL,SDS-PAGE分析结果表明纤维二糖水解酶在P.pastorisCBHⅡ1中的表达量远远高于里氏木霉。对表达产物进行了LC-MS分析,结果表明所表达的蛋白为里氏木霉的纤维二糖水解酶。  相似文献   

3.
Aims:  A new cellobiohydrolase (CBH) gene ( cbh3 ) from Chaetomium thermophilum was cloned, sequenced and expressed in Pichia pastoris .
Methods and Results:  Using RACE-PCR, a new thermostable CBH gene ( cbh3 ) was cloned from C. thermophilum . The cDNA of the CBH was 1607 bp and contained a 1356 bp open reading frame encoding a protein CBH precursor of 451 amino acid residues. The mature protein structure of C. thermophilum CBH3 only comprises a catalytic domain and lacks cellulose-binding domain and a hinge region. The gene was expressed in P. pastoris . The recombinant CBH purified was a glycoprotein with a size of about 48·0 kDa, and exhibited optimum catalytic activity at pH 5·0 and 60 °C. The enzyme was more resistant to high temperature. The CBH could hydrolyse microcrystalline cellulose and filter paper.
Conclusions:  A new thermostable CBH gene of C. thermophilum was cloned, sequenced and overexpressed in P. pastoris .
Significance and Impact of the Study:  This CBH offers an interesting potential in saccharification steps in both cellulose enzymatic conversion and alcohol production.  相似文献   

4.
A gene encoding a thermo-stable endo--1,4-glucanase was isolated from the thermophilic fungus, Thermoascus aurantiacusIFO9748, and designated as eg1. Induction of this gene expression at 50°C was stronger than at 30°C. The deduced amino acid sequence encoded by eg1 showed that it belongs to the glycoside hydrolase family 5. The cloned gene was expressed in Saccharomyces cerevisiae and the gene product was purified and characterized. No significant activity loss was detected over 2 h at 70°C and the product was stable from pH 3–10. The enzyme was optimally active at 70°C over 20 min and the optimal pH was 6.  相似文献   

5.
Cellobiohydrolase genes cbhI and cbhII were isolated from Trichoderma viride AS3.3711 and T. viride CICC 13038, respectively, using RT-PCR technique. The cbhI gene from T. viride AS3.3711 contains 1,542 nucleotides and encodes a 514-amino acid protein with a molecular weight of approximately 53.96 kDa. The cbhII gene from T. viride CICC 13038 was 1,413 bp in length encoding 471 amino acid residues with a molecular weight of approximately 49.55 kDa. The CBHI protein showed high homology with enzymes belonging to glycoside hydrolase family 7 and CBHII is a member of Glycoside hydrolase family 6. CBHI and CBHII play a role in the conversion of cellulose to glucose by cutting the disaccharide cellobiose from the non-reducing end of the cellulose polymer chain. The two cellobiohydrolase (CBHI, CBHII) genes were successfully expressed in Saccharomyces cerevisiae H158. Maximal activities of transformants Sc-cbhI and Sc-cbhII were 0.03 and 0.089 units ml−1 under galactose induction, respectively. The optimal temperatures of the recombinant enzymes (CBHI, CBHII) were 60 and 70°C, respectively. The optimal pHs of recombinant enzymes CBHI and CBHII were at pH 5.8 and 5.0, respectively.  相似文献   

6.
The high production cost of cellulase is one of the limitations that hinder the commercialization of lignocellulose-based biorefineries. As one of the important cellulases, Neurospora crassa cellulase is not so intensively investigated as T. reesei cellulase. In this study, the cbh1gene (NCU07340) cloned from N. crassa was expressed in Pichia pastoris under the control of alcohol oxidase 1 (AOX1) promotor. Six transformants with the highest resistance to G418 were selected by two rounds of transformant screening, among which the most robust producer of the recombinant cellobiohydrolase I (CBHI) has an Avicelase activity of 0.22 U/mL. After fermentation optimization, it was improved to 0.30 U/mL. Interestingly, the optimal temperature and pH of the recombinant CBHI were 60°C and 7.2, respectively, and it was quite stable within the wide ranges of temperature and pH. This work is a good example for the future improvement and optimization of N. crassa cellulase.  相似文献   

7.
The serine protease gene from a thermophilic fungus Thermoascus aurantiacus var. levisporus, was cloned, sequenced, and expressed in Pichia pastoris and the recombinant protein was characterized. The full-length cDNA of 2,592 bp contains an ORF of 1,482 bp encoding 494 amino acids. Sequence analysis of the deduced amino acid sequence revealed high homology with subtilisin serine proteases. The putative enzyme contained catalytic domain with active sites formed by three residues of Aspl83, His215, and Ser384. The molecular mass of the recombinant enzyme was estimated to be 59.1 kDa after overexpression in P. pastoris. The activity of recombinant protein was 115.58 U/mg. The protease exhibited its maximal activity at 50°C and pH 8.0 and kept thermostable at 60°C, and retained 60% activity after 60 min at 70° C. The protease activity was found to be inhibited by PMSF, but not by DTT or EDTA. The enzyme has broad substrate specificity such as gelatin, casein and pure milk, and exhibiting highest activity towards casein.  相似文献   

8.
Summary Cellobiohydrolase II was purified from aMicrobispora bispora culture filtrate and a monoclonal antibody to it was prepared. Screening aM. bispora genomic library inEscherichia coli with this antibody yielded three equivalent clones. Subcloning resulted in greater expression, and activity could be monitored using 4-methylumbelliferylcellobioside. Southern analysis provided evidence that there is a single gene coding for CBH II. The original 22-kb fragment was reduced to 4 kb and subcloned into pUC118/119 resulting in a doubling of expression CBH II. The gene was expressed via its own promoter. The optimal pH (6.5) and the optimal temperature (60°C) of the cloned enzyme are similar to that of the native CBH II.  相似文献   

9.
A superoxide dismutase (SOD) gene of Thermoascus aurantiacus var. levisporus, a thermophilic fungus, was cloned, sequenced, and expressed in Pichia pastoris and its gene product was characterized. The coding sequence predicted a 231 residues protein with a unique 35 amino acids extension at the N-terminus indicating a mitochondrial-targeting sequence. The content of Mn was 2.46 μg/mg of protein and Fe was not detected in the purified enzyme. The enzyme was found to be inhibited by NaN3, but not by KCN or H2O2. These results suggested that the SOD in Thermoascus aurantiacus var. levisporus was the manganese superoxide dismutase type. In comparison with other MnSODs, all manganese-binding sites were also conserved in the sequence (H88, H136, D222, H226). The molecular mass of a single band of the enzyme was estimated to be 21.7 kDa. The protein was expressed in tetramer form with molecular weight of 68.0 kDa. The activity of purified protein was 2,324 U/mg. The optimum temperature of the enzyme was 55°C and it exhibited maximal activity at pH 7.5. The enzyme was thermostable at 50 and 60°C and the half-life at 80°C was approximately 40 min.  相似文献   

10.
Four cellobiohydrolase I (CBHI) glycoforms, namely, CBHI-A, CBHI-B, CBHI-C, and CBHI-D, were purified from the cultured broth of Penicillium decumbens JU-A10. All glycoforms had the same amino acid sequence but displayed different characteristics and biological functions. The effects of the N-glycans of the glycoforms on CBH activity were analyzed using mass spectrum data. Longer N-glycan chains at the Asn-137 of CBHI increased CBH activity. After the N-glycans were removed using site-directed mutagenesis and homologous expression in P. decumbens, the specific CBH activity of the recombinant CBHI without N-glycosylation increased by 65% compared with the wild-type CBHI with the highest specific activity. However, the activity was not stable. Only the N-glycosylation at Asn-137 can improve CBH activity by 40%. rCBHI with N-glycosylation only at Asn-470 exhibited no enzymatic activity. CBH activity was affected whether or not the protein was glycosylated, together with the N-glycosylation site and N-glycan structure. N-Glycosylation not only affects CBH activity but may also bring a new feature to a nonhydrolytic CBHI glycoform (CBHI-A). By supplementing CBHI-A to different commercial cellulase preparations, the glucose yield of lignocellulose hydrolysis increased by >20%. After treatment with a low dose (5 mg/g substrate) of CBHI-A at 50 °C for 7 days, the hydrogen-bond intensity and crystalline degree of cotton fibers decreased by 17 and 34%, respectively. These results may provide new guidelines for cellulase engineering.  相似文献   

11.
A gene encoding a cellobiohydrolase (CBHI) was isolated from Fusicoccum sp. (BCC4124), an endophytic fungus belongs in phylum Ascomycota, using 5' and 3' rapid amplification of cDNA end (RACE) technique. This CBHI gene contains 1395 nucleotides and encodes a 465-amino acid protein with a molecular weight of approximately 50 kDa. The deduced amino acid sequence showed significant similarity to those of other fungal CBHI belonging to family 7 of glycosyl hydrolase. Interestingly, the result from the amino acid alignment revealed that this CBHI does not contain the cellulose binding domain nor the linker region. The CBHI gene was successfully expressed in Pichia pastoris KM71. The purified recombinant CBHI has ability to hydrolyze Avicel, filter paper and 4-methylumbelliferyl beta-d-cellobioside (MUC) but not carboxymethylcellulose (CMC). It showed an optimal working condition at 40 degrees C, pH 5 with K(m) and V(max) toward MUC of 0.57 mM and 3.086 nmol/min/mg protein, respectively. The purified enzyme was stable at pH range of 3-11. The enzyme retained approximately 50% of its maximal activity after incubating at 70-90 degrees C for 30 min. Due to its stability through wide range of pH, and moderately stable at high temperature, this enzyme has potential in various biotechnology applications.  相似文献   

12.
The trehalosyl dextrin-forming enzyme (TDFE) mainly catalyzes an intramolecular transglycosyl reaction to form trehalosyl dextrins from dextrins by converting the -1,4-glucosidic linkage at the reducing end to an -1,1-glucosidic linkage. In this study, the treY gene encoding TDFE was PCR cloned from the genomic DNA of Sulfolobus solfataricus ATCC 35092 to an expression vector with a T7 lac promoter and then expressed in Escherichia coli. The recombinant TDFE was purified sequentially by using heat treatment, ultrafiltration, and gel filtration. The obtained recombinant TDFE showed an apparent optimal pH of 5 and an optimal temperature of 75°C. The enzyme was stable in a pH range of 4.5–11, and the activity remained unchanged after a 2-h incubation at 80°C. The transglycosylation activity of TDFE was higher when using maltoheptaose as substrate than maltooligosaccharides with a low degree of polymerization (DP). However, the hydrolysis activity of TDFE became stronger when low DP maltooligosaccharides, such as maltotriose, were used as substrate. The ratios of hydrolysis activity to transglycosylation activity were in the range of 0.2–14% and increased when the DP of substrate decreased. The recombinant TDFE was found to exhibit different substrate specificity, such as its preferred substrates for the transglycosylation reaction and the ratio of hydrolysis to transglycosylation of the enzyme reacting with maltotriose, when compared with other natural or recombinant TDFEs from Sulfolobus.  相似文献   

13.
嗜热毛壳菌Chaetomium thermophilum CT2是一种土壤腐生菌,可产生具有重要工业生产价值的纤维素酶类。RACE-PCR获得嗜热毛壳菌纤维二糖水解酶Ⅱ(CBHⅡ)的编码基因(cbh2)。DNA序列分析表明cbh2的开放阅读框由1428个碱基组成,编码476个氨基酸。推断的氨基酸序列包含一个典型真菌纤维素酶的糖结合域(CBD)、催化域(CD)以及二者之间富含脯氨酸和羟基氨基酸的连接桥。根据氨基酸序列推算该酶分子量为53kD,属于糖苷水解酶第六家族,具有该家族催化保守区的典型特征。PCR扩增cbh2的成熟蛋白编码基因,利用基因重组的方法构建可在毕赤酵母分泌表达系统中表达纤维二糖水解酶蛋白的重组表达载体,并转化毕赤酵母得到重组子。在毕赤酵母醇氧化酶AOX1基因启动子的作用下,重组蛋白得到高效表达,小规模发酵量达1.2 mg/mL。经硫酸铵沉淀、DEAESepharose Fast flow阴离子层析等步骤纯化了该重组表达蛋白。SDS-PAGE得到重组蛋白分子量为67kD,与从嗜热毛壳菌中纯化的该酶分子量一致。该重组纤维二糖水解酶作用的最适合温度50℃,最适pH4.0,在70℃的半衰期为30min,具有较好的热稳定性。  相似文献   

14.
According to the amino acid sequence, a codon-optimized xylanase gene (xynA1) from Thermomyces lanuginosus DSM 5826 was synthesized to construct the expression vector pHsh-xynA1. After optimization of the mRNA secondary structure in the translational initiation region of pHsh-xynA1, free energy of the 70 nt was changed from −6.56 to −4.96 cal/mol, and the spacing between AUG and the Shine-Dalgarno sequence was decreased from 15 to 8 nt. The expression level was increased from 1.3 to 13% of total cell protein. A maximum xylanase activity of 47.1 U/mL was obtained from cellular extract. The recombinant enzyme was purified 21.5-fold from the cellular extract of Escherichia coli by heat treatment, DEAE-Sepharose FF column and t-Butyl-HIC column. The optimal temperature and pH were 65 °C and pH 6.0, respectively. The purified enzyme was stable for 30 min over the pH range of 5.0–8.0 at 60 °C, and had a half-life of 3 h at 65 °C.  相似文献   

15.
A gene encoding a putative β-glucosidase was isolated from Thermoascus aurantiacus IFO9748 and designated as bgl2. The recombinant enzyme showed β-glucosidase activity when p-nitrophenyl-β-glucose (pNP-Glc) was used as substrate. We also found that the enzyme activity was increased in the presence of organic solvents. An addition of 20 % (v/v) 1-octanol resulted in 54-fold higher activity of pNP-Glc hydrolysis, and transglycosylation activity was also found to be activated. The results of tryptophan fluorescence spectral analysis revealed the changes in the tertiary structure of the enzyme in the presence of 1-hexanol that may cause increased enzyme activity. BGLII has a distinctive hydrophobic linker region between N- and C-terminal domains. A chimeric enzyme in which the linker region was substituted by the corresponding region of another β-glucosidase failed to be activated by organic solvents, suggesting that the hydrophobic linker region may act as a molecular switch in BGLII.  相似文献   

16.
A gene encoding a xylanase, named xynS20, was cloned from the ruminal fungus Neocallimastix patriciarum. The DNA sequence of xynS20 revealed that the gene was 1,008 bp in size and encoded amino acid sequences with a predicted molecular weight of 36 kDa. The amino acid sequence alignment showed that the highest sequence identity (28.4%) is with insect gut xylanase XYL6805. According to the sequence-based classification, a putative conserved domain of glycosyl hydrolase family 11 was detected at the N-terminus of XynS20 and a putative conserved domain of family 1 carbohydrate-binding module (CBM) was observed at the C-terminus of XynS20. An Asn-rich linker sequence was found between the N-terminal catalytic domain and the C-terminal CBM of XynS20. To examine the activity of the gene product, xynS20 gene was cloned as an oleosin-fused protein, expressed in Escherichia coli, affinity-purified by formation of artificial oil bodies, released from oleosin by intein-mediated peptide cleavage, and finally harvested by concentration of the supernatant. The specific activity of purified XynS20 toward oat spelt xylan was 1,982.8 U mg−1. The recombinant XynS20 was stable in the mild acid pH range from 5.0 to 6.0, and the optimum pH was 6.0. The optimal reaction temperature of XynS20 was 45°C; at temperatures below 30 and above 55°C, enzyme activity was less than 50% of that at the optimal temperature.  相似文献   

17.
A gene (Tx-est1) encoding a thermostable feruloyl-esterase was isolated from the genome of the Gram-positive hemicellulolytic thermophilic bacterium Thermobacillus xylanilyticus. This gene contains an open reading frame of 1,020 bp encoding a protein with molecular mass of 37.4 kDa, similar to feruloyl-esterases from cellulolytic bacteria and fungi. The recombinant enzyme Tx-Est1 was expressed and produced in Escherichia coli. Tx-Est1 contains the conserved putative lipase residues Ser 202, Asp 287, and His 322 which act as catalytic triad in its C-terminus part. Purified Tx-Est1 was active against phenolic acid derivatives and stable at high temperatures. Optimal activity was observed at 65 °C and the optimal pH was around 8.5. The kinetic parameters of the esterase were determined on various substrates. The enzyme displayed activity against methyl esters of hydrocinnamic acids and feruloylated arabino-xylotetraose, exhibiting high specificity and affinity for the latter. Our results showed that Tx-Est1 is a thermostable feruloyl-esterase which could be useful to hydrolyze arabinoxylans from graminaceous plant cell walls as the enzyme is able to release phenolic acids from a lignocellulose biomass.  相似文献   

18.
In the search for suitable cellulase combinations for industrial biofinishing of cotton, five different types of Trichoderma reesei strains were constructed for elevated cellobiohydrolase production: CBHI overproducers with and without endoglucanase I (EGI), CBHII overproducers with and without endoglucanase II (EGII) and strains overproducing both CBHI and CBHII without the major endoglucanases I and II. One additional copy of cbh1 gene increased production of CBHI protein 1.3-fold, and two copies 1.5-fold according to ELISA (enzyme-linked immunosorbent assay). The level of total secreted proteins was increased in CBHI transformants as compared to the host strain. One copy of the cbh2 expression cassette in which the cbh2 was expressed from the cbh1 promoter increased production of CBHII protein three- to four-fold when compared to the host strain. T. reesei strains producing elevated amounts of both CBHI and CBHII without EGI and EGII were constructed by replacing the egl1 locus with the coding region of the cbh1 gene and the egl2 locus with the coding region of cbh2. The cbh1 was expressed from its own promoter and the cbh2 gene using either the cbh1 or cbh2 promoter. Production of CBHI by the CBH-transformants was increased up to 1.6-fold and production of CBHII up to 3.4-fold as compared with the host strain. Approximately similar amounts of CBHII protein were produced by using cbh1 or cbh2 promoters. When the enzyme preparation with elevated CBHII content was used in biofinishing of cotton, better depilling and visual appearance were achieved than with the wild type preparation; however, the improvement was not as pronounced as with preparations with elevated levels of endoglucanases (EG).  相似文献   

19.
An edible-oil degrading bacterial strain HH-01 was isolated from oil plant gummy matter and was classified as a member of the genus Bacillus on the basis of the nucleotide sequence of the 16S rRNA gene. A putative lipase gene and its flanking regions were cloned from the strain based on its similarity to lipase genes from other Bacillus spp. The deduced product was composed of 214 amino acids and the putative mature protein, consisting of 182 amino acids, exhibited 82% amino acid sequence identity with the subfamily I.4 lipase LipA of Bacillus subtilis 168. The recombinant product was successfully overproduced as a soluble form in Escherichia coli and showed lipase activity. The gene was, therefore, designated as lipA of HH-01. HH-01 LipA was stable at pH 4–11 and up to 30°C, and its optimum pH and temperature were 8–9 and 30°C, respectively. The enzyme showed preferential hydrolysis of the 1(3)-position ester bond in trilinolein. The activity was, interestingly, enhanced by supplementing with 1 mM CoCl2, in contrast to other Bacillus lipases. The lipA gene seemed to be constitutively transcribed during the exponential growth phase, regardless of the presence of edible oil.  相似文献   

20.
Two degenerate primers established from the consensus sequences of bacterial leucine aminopeptidases (LAP) were used to amplify a 360-bp gene fragment from the chromosomal DNA of thermophilic Bacillus kaustophilus CCRC 11223 and the amplified fragment was successfully used as a probe to clone a leucine aminopeptidase (lap) gene from a genomic library of the strain. The gene consists of an open reading frame (ORF) of 1,494 bp and encodes a protein of 497 amino acid residues with a calculated molecular mass of 53.7 kDa. The complete amino acid sequence of the cloned enzyme showed greater than 30% identity with prokaryotic and eukaryotic LAPs. Phylogenetic analysis showed that B. kaustophilus LAP is closely related to the enzyme from Bacillus subtilis and is grouped with the M17 family. His6-tagged LAP was generated in Escherichia coli by cloning the coding region into pQE-30 and the recombinant enzyme was purified by nickel-chelate chromatography. The pH and temperature optima for the purified enzyme were 8 and 65°C, respectively, and 50% of its activity remained after incubation at 60°C for 32 min. The enzyme preferentially hydrolyzed l-leucine-p-nitroanilide (l-Leu-p-NA) followed by Cys derivative.Communicated by G. Antranikian  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号