首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 899 毫秒
1.
Nicotinamide adenine dinucleotide (NAD+) has been covalently attached to alginic acid using carbodiimide coupling, thereby producing a macromolecular adduct of NAD, which can be rendered either soluble or insoluble by adjustment of pH. It was found that this NAD+-alginic acid complex was enzymatically active, and also that the oxidized form could be electrochemically reduced without loss in enzymatic activity. This NAD+ adduct has now also been polarographically characterized as to its two-step reduction waves, which are slightly shifted toward more cathodic potential as compared to free NAD+. When controlled electrolysis was conducted to reduce the bound NAD+ at the cathode, the NADH so formed by electrochemical action was found to be again oxidizable either enzymatically or electrochemically without loss in co-enzymatic function. The NADH adduct produced by electrochemical reduction of the NAD+ adduct has also been characterized by voltammetry.  相似文献   

2.
Nicotinamide adenine dinucleotide (NAD+) has been covalently attached to alginic acid using carbodiimide coupling, thereby producing a macromolecular adduct of NAD, which can be rendered either soluble or insoluble by adjustment of pH. It was found that this NAD+ · alginic acid complex was enzymatically active, and also that the oxidized form could be electrochemically reduced without loss in enzymatic activity. This NAD+ adduct has now also been polarographically characterized as to its two-step reduction waves, which are slightly shifted toward more cathodic potential as compared to free NAD+. When controlled electrolysis was conducted to reduce the bound NAD+ at the cathode, the NADH so formed by electrochemical action was found to be again oxidizable either enzymatically or electrochemically without loss in co-enzymic function. The NADH adduct produced by electrochemical reduction of the NAD+ adduct has also been characterized by voltammetry.  相似文献   

3.
A covalently bound adduct of nicotinamide adenine dinucleotide (NAD) with alginic acid has been found to be enzymatically active and to undergo electrochemical oxidation or reduction without significant loss of its enzymatic activity. The preparation of the adduct itself (from NAD+, alginic acid, and 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate) is also accomplished with substantially complete retention of enzymatic activity. This adduct has been converted from the oxidized to the reduced form by controlled potential electrolysis using mercury and stainless-steel electrodes. This electrolytically produced NADH complex could be oxidized again to the enzymatically active NAD+ complex by enzymatic reaction with the proton acceptor, 2,6-dichlorophenol indophenol, as catalyzed by diaphorase. Using this electrolytic method with immobilized NAD, it is now possible to carry out redox reactions in which NADH is enzymatically oxidized to NAD+, with the simultaneous electrolytic regeneration of the reduced form, NADH, from the oxidized form, NAD+, produced in the enzymatic reaction.  相似文献   

4.
Preparation and properties of soluble-insoluble immobilized proteases   总被引:1,自引:0,他引:1  
In order to carry out an effective enzyme reaction, the preparation of soluble-insoluble immobilized enzyme was investigated. Proteases were selected as model enzymes, and their immobilization was carried out by using an enteric coating polymer as a carrier. Among the polymers tested, methacrylic acid-methylacrylate-methylmethacrylate copolymer (MPM-06) gave the most active soluble-insoluble immobilized papain. This immobilized papain showed insoluble from below pH 4.8 and soluble form above pH 5.8; it was also soluble in water-miscible organic solvent. It was reusable and more stable with heat and water-miscible organic solvents than native proteases. Furthermore, various proteases could be immobilized by using MPM-06 with high activity. Chymotrypsin immobilized by this method catalyzed the effective peptide synthesis in a heterogeneous reaction system containing water-miscible organic solvent.  相似文献   

5.
Zhu S  Wu Y  Yu Z 《Journal of biotechnology》2005,116(4):397-401
Candida rugosa lipase (Lipase OF) was immobilized by covalent binding to a pH-sensitive support showing reversibly soluble-insoluble characteristics with pH change. The immobilized lipase could carry out the enantioselective hydrolysis of ketoprofen ester in a soluble form yet be recovered after precipitation by simply adjusting pH. Its activity and enantioselectivity for hydrolysis of 2-chloroethyl ester of ketoprofen were enhanced 1.5-fold and 8.7-fold compared with those of free lipase. After eight catalytic cycles, the immobilized enzyme was still 46% active and its enantioselectivity remained unchanged.  相似文献   

6.
Cellulase was covalently immobilized on an enteric coating polymer, Eudragit L, that is reversibly soluble and insoluble depending on the pH of the medium. The hydrolysis of solid cellulose with the immobilized enzyme can take advantage of the soluble property of the immobilized enzyme itself at the most reactive pH value; on the other hand, recovery of the enzyme can take advantage of the insoluble property of the enzyme at other pH values. It was experimentally confirmed that 100% of immobilized enzyme activity in solution can be recovered by precipitation and by dissolving it again by alternative change of pH. After a period of hydrolysis, immobilized enzyme and unreacted cellulose were precipitated together to remove the product-the soluble sugar solution-by changing pH. Following this, a new buffer solution was added to the precipitate to dissolve it and resume the reaction. This was repeated several times. The hydrolysis rate of this process increased significantly compared with that of a batch process. Utilization of the reversible soluble-insoluble carrier for immobilizing enzyme is promising, not only for cellulose-cellulase systems, but also for other heterogeneous reaction systems.  相似文献   

7.
Trypsin was immobilized onto alginic acid-poly(glycidyl methacrylate) graft copolymer (AAGMA). The resulting immobilized enzyme showed 65% of the soluble enzymatic activity. The temperature optimum was shifted by 5 degrees C to a higher value. The pH optimum of immobilized enzyme has also been shifted by 0.5 units toward the alkaline side when compared to that of soluble enzyme. The pH stability and thermal stability are better than that of soluble enzyme.  相似文献   

8.
Hen egg white lysozyme was immobilized by carbodiimide method to form amide bonds with a polymer (AS-L) showing reversibly soluble-insoluble characteristics with pH change. The immobilized enzyme (LY-AS) was soluble above pH 6 and precipitate below pH 4.5, offering advantages in that it can carry out hydrolysis of microbial cells in a soluble form yet be recovered after precipitation at low pH. The maximum specific activity of LY-AS was 66% of that of free lysozyme with M. lysodeikticus cells as substrate, which is much higher than the values reported in the literature using water-insoluble materials as carriers. The effects of pH and temperature on the activity of LY-AS were studied and compared with those of free lysozyme. With repeated pH cycles between 6.6 and 4.5, the operation half-life of immobilized enzyme activity was nine cycles. Repeated batch lysis of microbial cells could be carried out with intermittent enzyme precipitation and recovery steps. In such an operation the insoluble residual cells should be recovered together with the immobilized enzyme to minimize enzyme loss arising from adsorption to cells.  相似文献   

9.
A copolymer of methacrylic acid (MAA) and N-isopropyl acrylamide (NIPAM) was used as a novel, reversibly soluble-insoluble support whose solubility changes depending on the temperature of the solution. Amylase (Dabiase K-27) immobilized covalently on the thermo-responsive polymer showed good solubility response: the immobilized enzyme (D-MN) was in a soluble state below 32°C, but insoluble above 42°C. D-MN in a soluble state has a high specific activity for the hydrolysis of soluble or uncooked starch. The solubility response of D-NM to changes in the temperature of the solution was more sensitive when 0.5% NaCl was added to a buffer solution (pH 4.5) with D-MN than in the buffer solution without NaCl. D-MN was used successively for repeated hydrolysis reactions of soluble and uncooked starches, in which D-MN was insolubilized either by changing the temperature of the reaction mixture from 30°C to 36°C with 0.5% NaCl or by adjusting the NaCl concentration of the reaction mixture from 0% to 1% at 30°C. In the repeated hydrolysis, glucose was produced successively from the soluble and uncooked starches, and D-MN could be repeatedly used after being recovered from the reaction product by centrifugation at the end of each batchwise hydrolysis.  相似文献   

10.
The purpose of this study was to prepare low molecular weight alginic acid (LMWA) nanoparticles by cation-induced, controlled gelification of depolymerized alginic acid for effective drug delivery to drug resistant bacteria. The depolymerization reaction was performed using potassium persulfate oxidation at an optimized condition. The optimized conditions for depolymerization were anticipated to be 37°C, pH 4, 2 days reaction time, and a 0.075 M concentration of potassium persulphate containing 0.001 M silver nitrate in the final reaction mixture. Gel permeation chromatography showed depolymerized alginic acid had an average molecular weight of 20.95 ± 0.49 kDa. Depolymerized alginic acid was also characterized for its structural integrity by X-ray diffraction, nuclear magnetic resonance, and Fourier transform spectroscopy. Depolymerized alginic acid was used to prepare low molecular weight nanoparticles with a particle size of 54 ± 0.41 nm, and a zetapotential of −32.2 ± 3.91 mV. The nanoparicles were then subjected to tetracycline loading. In vitro drug loading and drug release efficiencies after 100 h were determined to be 66.56 ± 1.88 and 61.8 ± 0.141%, respectively. Finally, the minimal inhibitory concentration and a putative mode of action for the tetracycline nanoparticles were determined using tetracycline resistant bacteria, Escherichia coli XL-1.  相似文献   

11.
A reversibly soluble-autoprecipitating cellulase was prepared by covalently immobilizing Meicelase on an enteric coating polymer (AS-L, hydroxypropyl methylcellulose acetate succinate). The immobilized enzyme (M-AS) was reversibly soluble-insoluble depending on the pH of the reaction medium. Moreover, the enzymatic activity of M-AS, in a soluble state, for microcrystalline cellulose was higher than that of the conventional solid immobilized enzyme. On the other hand, M-AS, in an insoluble state, and good properties of self-sedimentation, and a large portion of M-AS spontaneously precipitated for about 15 min at pH 3.8. In the repeated hydrolysis of rice straw, delignified with sodium hydroxide using a bioreactor with a conical bottom, M-AS was separated batchwise from a production solution by self-sedimentation in a conical bottom of the bioreactor. When delignified, rice straw was hydrolyzed repeatedly by reuse of M-AS; the total amount of soluble sugar produced from 5 g of delignified rice straw was 2.7 g. Further, by the hydrolysis method with repeated removal of reaction inhibitors (soluble sugar), the time required for converting the same amount of delignified rice straw to soluble sugar was significantly reduced, as compared with that by the standard reaction method.  相似文献   

12.
The non-covalent immobilization of a commercial preparation of xylanase from A. niger was carried out on a reversibly soluble-insoluble enteric polymer Eudragit(TM) L-100. The immobilization of the xylanase activity by adsorption was simultaneously accompanied by removal of cellulase activity since the latter did not bind to the polymer. Thus, the soluble enzyme derivative may be useful for treatment of paper pulp bleaching in paper industry. The immobilized xylanase retained 60% of its activity toward xylan as the substrate. No change was observed in the pH optimum (5.5) of the enzyme upon immobilization. Only marginal increase in the K(m) of the free enzyme (3.6 mg ml(-1) to 5.0 mg ml(-1)) upon immobilization on the soluble polymer reflected that the enzyme-substrate binding continues to be efficient in spite of the macromolecular nature of the substrate. Fluorescence spectroscopy and UV difference spectroscopy were used to probe the change(s) in the enzyme structure upon immobilization. This change in structure was correlated with the "effectiveness factor" of the enzyme activity. CD spectra also showed that the enzyme undergoes drastic changes in the structure.  相似文献   

13.
Summary The NAD(P)H:quinone oxidoreductase activity of tobacco leaves is catalyzed by a soluble flavoprotein [NAD(P)H-QR] and membrane-bound forms of the same enzyme. In particular, the activity associated with the plasma membrane cannot be released by hypoosmotic and salt washing of the vesicles, suggesting a specific binding. The products of the plasma-membrane-bound quinone reductase activity are fully reduced hydroquinones rather than semi-quinone radicals. This peculiar kinetic property is common with soluble NAD(P)H-QR, plasma-membrane-bound NAD(P)H:quinone reductase purified from onion roots, and animal DT-diaphorase. These and previous results demonstrate that soluble and plasma-membrane-bound NAD(P)H:quinone reductases are strictly related flavo-dehydrogenases which seem to replace DT-diaphorase in plant tissues. Following purification to homogeneity, the soluble NAD(P)H-QR from tobacco leaves was digested. Nine peptides were sequenced, accounting for about 50% of NAD(P)H-QR amino acid sequence. Although one peptide was found homologous to animal DT-diaphorase and another one to plant monodehydroascorbate reductase, native NAD(P)H-QR does not seem to be structurally similar to any known flavoprotein.Abbreviations MDAR monodehydroascorbate reductase - PM plasma membrane - NAD(P)H-QR NAD(P)H:quinone oxidoreductase - DPI diphenylene iodonium - DQ duroquinone - CoQ2 coenzyme Q2  相似文献   

14.
Removal of beta-glucosidase (BG) from cellulase is essential to the enzymatic production of cellobiose from cellulose because of the high reactivity of BG with cellobiose to form glucose. Chitosan is a reversibly soluble-insoluble polymer depending on pH, and it has an affinity with the other components, endo-beta-1,4-glucanase and cellobiohydrolase, or cellulase. The affinity precipitation technique using chitosan is an effective way to fractionate cellulase for the above purpose. Hydrolysis experiments of cellulose with the residual fractionated enzyme gave higher cellobiose contents in the soluble sugar products. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
M R Eftink  K Bystr?m 《Biochemistry》1986,25(21):6624-6630
The association of the coenzyme NAD+ to liver alcohol dehydrogenase (LADH) is known to be pH dependent, with the binding being linked to the shift in the pK of some group on the protein from a value of 9-10, in the free enzyme, to 7.5-8 in the LADH-NAD+ binary complex. We have further characterized the nature of this linkage between NAD+ binding and proton dissociation by studying the pH dependence (pH range 6-10) of the proton release, delta n, and enthalpy change, delta Ho(app), for formation of both binary (LADH-NAD+) and ternary (LADH-NAD+-I, where I is pyrazole or trifluoroethanol) complexes. The pH dependence of both delta n and delta Ho(app) is found to be consistent with linkage to a single acid dissociating group, whose pK is perturbed from 9.5 to 8.0 upon NAD+ binding and is further perturbed to approximately 6.0 upon ternary complex formation. The apparent enthalpy change for NAD+ binding is endothermic between pH 7 and pH 10, with a maximum at pH 8.5-9.0. The pH dependence of the delta Ho(app) for both binary and ternary complex formation is consistent with a heat of protonation of -7.5 kcal/mol for the coupled acid dissociating group. The intrinsic enthalpy changes for NAD+ binding and NAD+ plus pyrazole binding to LADH are determined to be approximately 0 and -11.0 kcal/mol, respectively. Enthalpy change data are also presented for the binding of the NAD+ analogues adenosine 5'-diphosphoribose and 3-acetylpyridine adenine dinucleotide.  相似文献   

16.
A method has been developed for the quantitative determination of the relative proportions of d-mannuronic and l-guluronic acids in alginic acid. To obtain homogeneous reaction conditions the viscosity of the alginic acid sample was first decreased by limited hydrolysis with mineral acid. The carboxyl groups were then esterified by reaction with 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide, and reduced with sodium borohydride. The resulting hexosans were converted by acid hydrolysis to d-mannose and an equilibrium mixture of l-gulose and 1,6-anhydro-l-gulose. These were treated with sodium borohydride; the 1,6-anhydro-l-gulose was not reduced whereas d-mannose and l-gulose were converted to d-mannitol and d-glucitol. The hexitols were estimated by gas-liquid chromatography as the n-butane boronic acid esters, and the relative proportions of the uronic acids in the alginic acid were calculated by taking into account the equilibrium ratio of l-gulose and 1,6-anhydro-l-gulose. The method can be used to analyze as little as 2 mg of alginic acid.  相似文献   

17.
Using ammonium sulfate precipitation, gel filtration, and affinity chromatography, inosine monophosphate (IMP) oxidoreductase (EC 1.2.1.14) was isolated from the soluble proteins of the plant cell fraction of nitrogen-fixing nodules of cowpea (Vigna unguiculata L. Walp). The enzyme, purified more than 140-fold with a yield of 11%, was stabilized with glycerol and required a sulfydryl-reducing agent for maximum activity. Gel filtration indicated a molecular weight of 200,000, and sodium dodecyl sulfate-gel electrophoresis a single subunit of 50,000 Da. The final specific activity ranged from 1.1 to 1.5 mumol min-1 mg protein-1. The enzyme had an alkaline pH optimum and showed a high affinity for IMP (Km = 9.1 X 10(-6) M at pH 8.8 and NAD levels above 0.25 mM) and NAD (Km = 18-35 X 10(-6) M at pH 8.8). NAD was the preferred coenzyme, with NADP reduction less than 10% of that with NAD, while molecular oxygen did not serve as an electron acceptor. Intermediates of ureide metabolism (allantoin, allantoic acid, uric acid, inosine, xanthosine, and XMP) did not affect the enzyme, while AMP, GMP, and NADH were inhibitors. GMP inhibition was competitive with a Ki = 60 X 10(-6) M. The purified enzyme was activated by K+ (Km = 1.6 X 10(-3) M) but not by NH+4. The K+ activation was competitively inhibited by Mg2+. The significance of the properties of IMP oxidoreductase for regulation of ureide biosynthesis in legume root nodules is discussed.  相似文献   

18.
Alginic acid gels were studied by small-angle X-ray scattering and rheology to elucidate the influence of alginate chemical composition and molecular weight on the gel elasticity and molecular structure. The alginic acid gels were prepared by homogeneous pH reduction throughout the sample. Three alginates with different chemical composition and sequence, and two to three different molecular weights of each sample were examined. Three alginate samples with fractions of guluronic acid residues of 0.39 (LoG), 0.50 (InG), and 0.68 (HiG), covering the range of commercially available alginates, were employed. The excess scattering intensity I of the alginic acid gels was about 1 order of magnitude larger and exhibited a stronger curvature toward low q compared to ionically cross-linked alginate. The I(q) were decomposed into two components by assuming that the alginic acid gel is composed of aggregated multiple junctions and single chains. Time-resolved experiments showed a large increase in the average size of aggregates and their weight fraction within the first 2 h after onset of gelling, which also coincides with the most pronounced rheological changes. At equilibrium, little or no effect of molecular weight was observed, whereas at comparable molecular weights, an increased scattering intensity with increasing content of guluronic acid residues was recorded, probably because of a larger apparent molecular mass of domains. The results suggest a quasi-ordered junction zone is formed in the initial stage, followed by subsequent assembling of such zones, forming domains in the order of 50 A. The average length of the initial junction zones, being governed by the relative fraction of stabilizing G-blocks and destabilizing alternating (MG) blocks, determines the density of the final random aggregates. Hence, high-G alginates give alginic acid gels of a higher aggregate density compared to domains composed of loosely packed shorter junction zones in InG or LoG system.  相似文献   

19.
Summary Alginic acid production by Pseudomonas aeruginosa PAO strains was studied in yeast extract/2% (w/v) gluconate medium. In all of the five strains studied, synthesis of the alginic acid was shown to occur in the stationary phase of growth. Each strain produced similar amounts of alginic acid at both 30° C and 37° C. However the amount of alginic acid varied from 7.5–11.5 gl–1 depending upon the strain. The alginic acid was isolated, purified and its chemical composition determined. All strains produced a polysaccharide rich in polymannuronic acid which contained only polymannuronic acid blocks, polyguluronic acid blocks appeared to be absent. The amount of O-acetylation varied considerably from 2.3–14.7%. Analysis of the chain length distribution by poly-acrylamide gel electropheresis indicated that a homogeneous size of polymer was synthesised when compared to a high viscosity algal sample.  相似文献   

20.
Summary Formate dehydrogenase in extracts of the facultative phototroph, Rhodopseudomonas palustris was shown to be soluble and NAD-linked. The flavin nucleotides, FMN and FAD, stimulated the rate of NAD reduction about fourfold. Reduction of artificial electron acceptors such as DCPIP and cytochrome c was also stimulated by FMN and FAD. The pH optimum for the reduction of NAD was pH 8.0, in contrast to pH 6.8 for cytochrome c and DCPIP reduction. The apparent K m for formate as measured by NAD reduction was 2.6×10-4 M. Although the addition of thiosulfate or yeast extract to the formate medium increased both the growth rate and yield of Rhps. palustris, they had little effect on the activity of formate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号