首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a new role for H-NS in Shigella spp.: suppression of repair of DNA damage after UV irradiation. H-NS-mediated suppression of virulence gene expression is thermoregulated in Shigella, being functional at 30°C and nonfunctional at 37 to 40°C. We find that H-NS-mediated suppression of DNA repair after UV irradiation is also thermoregulated. Thus, Shigella flexneri M90T, incubated at 37 or 40°C postirradiation, shows up to 30-fold higher survival than when incubated at 30°C postirradiation. The hns mutants BS189 and BS208, both of which lack functional H-NS, show a high rate of survival (no repression) whether incubated at 30 or 40°C postirradiation. Suppression of DNA repair by H-NS is not mediated through genes on the invasion plasmid of S. flexneri M90T, since BS176, cured of plasmid, behaves identically to the parental M90T. Thus, in Shigella the nonfunctionality of H-NS permits enhanced DNA repair at temperatures encountered in the human host. However, pathogenic Escherichia coli strains (enteroinvasive and enterohemorrhagic E. coli) show low survival whether incubated at 30 or 40°C postirradiation. E. coli K-12 shows markedly different behavior; high survival postirradiation at both 30 and 40°C. These K-12 strains were originally selected from E. coli organisms subjected to both UV and X irradiation. Therefore, our data suggest that repair processes, extensively described for laboratory strains of E. coli, require experimental verification in pathogenic strains which were not adapted to irradiation.  相似文献   

2.
3.
Extracts of Drosophila embryos and adults have been found to catalyze highly efficient DNA mismatch repair, as well as repair of 1- and 5-bp loops. For mispairs T · G and G · G, repair is nick dependent and is specific for the nicked strand of heteroduplex DNA. In contrast, repair of A · A, C · A, G · A, C · T, T · T, and C · C is not nick dependent, suggesting the presence of glycosylase activities. For nick-dependent repair, the specific activity of embryo extracts was similar to that of extracts derived from the entirely postmitotic cells of young and senescent adults. Thus, DNA mismatch repair activity is expressed in Drosophila cells during both development and aging, suggesting that there may be a function or requirement for mismatch repair throughout the Drosophila life span. Nick-dependent repair was reduced in extracts of animals mutant for the mei-9 gene. mei-9 has been shown to be required in vivo for certain types of DNA mismatch repair, nucleotide excision repair (NER), and meiotic crossing over and is the Drosophila homolog of the yeast NER gene rad1.  相似文献   

4.
Our previous publication shows that Sulfolobus solfataricus Dpo4 utilizes an ‘induced-fit’ mechanism to select correct incoming nucleotides at 37°C. Here, we provide a comprehensive report elucidating the kinetic mechanism of a DNA polymerase at a reaction temperature higher than 37°C in an attempt to determine the effect of temperature on enzyme fidelity and mechanism. The fidelity of Dpo4 did not change considerably with a 30°C increase in reaction temperature, suggesting that the fidelity of Dpo4 at 80°C is similar to that determined here at 56°C. Amazingly, the incorporation rate for correct nucleotides increased by 18 900-fold from 2°C to 56°C, similar in magnitude to that observed for incorrect nucleotides, thus not perturbing fidelity. Three independent lines of kinetic evidence indicate that a protein conformational change limits correct nucleotide incorporations at 56°C. Furthermore, the activation energy for the incorporation of a correct nucleotide was determined to be 32.9 kcal/mol, a value considerably larger than those values estimated for a rate-limiting chemistry step, providing a fourth line of evidence to further substantiate this conclusion. These results herein provide evidence that Dpo4 utilizes the ‘induced-fit’ mechanism to select a correct nucleotide at all temperatures.  相似文献   

5.
In human cells, ATP is generated using oxidative phosphorylation machinery, which is inoperable without proteins encoded by mitochondrial DNA (mtDNA). The DNA polymerase gamma (Polγ) repairs and replicates the multicopy mtDNA genome in concert with additional factors. The Polγ catalytic subunit is encoded by the POLG gene, and mutations in this gene cause mtDNA genome instability and disease. Barriers to studying the molecular effects of disease mutations include scarcity of patient samples and a lack of available mutant models; therefore, we developed a human SJCRH30 myoblast cell line model with the most common autosomal dominant POLG mutation, c.2864A>G/p.Y955C, as individuals with this mutation can present with progressive skeletal muscle weakness. Using on-target sequencing, we detected a 50% conversion frequency of the mutation, confirming heterozygous Y955C substitution. We found mutated cells grew slowly in a glucose-containing medium and had reduced mitochondrial bioenergetics compared with the parental cell line. Furthermore, growing Y955C cells in a galactose-containing medium to obligate mitochondrial function enhanced these bioenergetic deficits. Also, we show complex I NDUFB8 and ND3 protein levels were decreased in the mutant cell line, and the maintenance of mtDNA was severely impaired (i.e., lower copy number, fewer nucleoids, and an accumulation of Y955C-specific replication intermediates). Finally, we show the mutant cells have increased sensitivity to the mitochondrial toxicant 2′-3′-dideoxycytidine. We expect this POLG Y955C cell line to be a robust system to identify new mitochondrial toxicants and therapeutics to treat mitochondrial dysfunction.  相似文献   

6.
A 14-mer α-pheromone peptide of Candida albicans was chemically synthesized and used to analyze the role of white-opaque switching in the mating process. The α-pheromone peptide blocked cell multiplication and induced “shmooing” in a/a cells expressing the opaque-phase phenotype but not in a/a cells expressing the white-phase phenotype. The α-pheromone peptide induced these effects at 25°C but not at 37°C. An analysis of mating-associated gene expression revealed several categories of gene regulation, including (i) MTL-homozygous-specific, pheromone stimulated, switching-independent (CAG1 and STE4); (ii) mating type-specific, pheromone-induced, switching-independent (STE2); and (iii) pheromone-induced, switching-dependent (FIG1, KAR4, and HWP1). An analysis of switching-regulated genes revealed an additional category of opaque-phase-specific genes that are downregulated by α-pheromone only in a/a cells (OP4, SAP1, and SAP3). These results demonstrate that α-pheromone causes shmooing, the initial step in the mating process, only in a/a cells expressing the opaque phenotype and only at temperatures below that in the human host. These results further demonstrate that although some mating-associated genes are stimulated by the α-pheromone peptide in both white- and opaque-phase cells, others are stimulated only in opaque-phase cells, revealing a category of gene regulation unique to C. albicans in which α-pheromone induction requires the white-opaque transition. These results demonstrate that in C. albicans, the mating process and associated gene regulation must be examined within the context of white-opaque switching.  相似文献   

7.
This large-scale study compared incubation temperatures (37°C versus 42°C) to study the detection of thermophilic Campylobacter species, including Campylobacter jejuni, C. coli, and C. lari, in various surface water samples and bird fecal droppings around Hamilton Harbor, Lake Ontario. The putative culture isolates obtained from incubation temperatures of 37 and 42°C were confirmed by Campylobacter genus- and species-specific triplex PCR assays targeting the 16S rRNA gene and the 16S-23S rRNA gene internal transcribed spacer (ITS) region. A total of 759 water, wastewater, and bird fecal dropping samples were tested. Positive amplification reactions for the genus Campylobacter were found for 454 (60%) samples incubated at 37°C, compared to 258 (34%) samples incubated at 42°C. C. jejuni (16%) and C. lari (12%) were detected significantly more frequently at the 42°C incubation temperature than at 37°C (8% and 5%, respectively). In contrast, significantly higher rates of C. coli (14%) and other Campylobacter spp. (36%) were detected at the 37°C incubation temperature than at 42°C (8% and 7%, respectively). These results were consistent across surface water, wastewater, and bird fecal dropping samples. At times, Campylobacter spp. were recovered and detected at 37°C (3% for C. jejuni, 10% for C. coli, and 3% for C. lari) when the same samples incubated at 42°C were negative. A significantly higher rate of other Campylobacter spp. was detected only at 37°C (32%) than only at 42°C (3%). These results indicate that incubation temperature can significantly influence the culturability and detection of thermophilic and other fastidious Campylobacter spp. and that a comprehensive characterization of the Campylobacter spp. in surface water, wastewaters, or bird fecal droppings will require incubation at both 37 and 42°C.  相似文献   

8.
Ling F  Shibata T 《The EMBO journal》2002,21(17):4730-4740
Yeast mhr1-1 was isolated as a defective mutation in mitochondrial DNA (mtDNA) recombination. About half of mhr1-1 cells lose mtDNA during growth at a higher temperature. Here, we show that mhr1-1 exhibits a defect in the partitioning of nascent mtDNA into buds and is a base-substitution mutation in MHR1 encoding a mitochondrial matrix protein. We found that the Mhr1 protein (Mhr1p) has activity to pair single-stranded DNA and homologous double-stranded DNA to form heteroduplex joints in vitro, and that mhr1-1 causes the loss of this activity, indicating its role in homologous mtDNA recombination. While the majority of the mtDNA in the mother cells consists of head-to-tail concatemers, more than half of the mtDNA in the buds exists as genome-sized monomers. The mhr1-1 deltacce1 double mutant cells do not maintain any mtDNA, indicating the strict dependence of mtDNA maintenance on recombination functions. These results suggest a mechanism for mtDNA inheritance similar to that operating in the replication and packaging of phage DNA.  相似文献   

9.
Dimethyl adenosine transferase (KsgA) performs diverse roles in bacteria, including ribosomal maturation and DNA mismatch repair, and synthesis of KsgA is responsive to antibiotics and cold temperature. We previously showed that a ksgA mutation in Salmonella enterica serovar Enteritidis results in impaired invasiveness in human and avian epithelial cells. In this study, we tested the virulence of a ksgA mutant (the ksgA::Tn5 mutant) of S. Enteritidis in orally challenged 1-day-old chickens. The ksgA::Tn5 mutant showed significantly reduced intestinal colonization and organ invasiveness in chickens compared to those of the wild-type (WT) parent. Phenotype microarray (PM) was employed to compare the ksgA::Tn5 mutant and its isogenic wild-type strain for 920 phenotypes at 28°C, 37°C, and 42°C. At chicken body temperature (42°C), the ksgA::Tn5 mutant showed significantly reduced respiratory activity with respect to a number of carbon, nitrogen, phosphate, sulfur, and peptide nitrogen nutrients. The greatest differences were observed in the osmolyte panel at concentrations of ≥6% NaCl at 37°C and 42°C. In contrast, no major differences were observed at 28°C. In independent growth assays, the ksgA::Tn5 mutant displayed a severe growth defect in high-osmolarity (6.5% NaCl) conditions in nutrient-rich (LB) and nutrient-limiting (M9 minimum salts) media at 42°C. Moreover, the ksgA::Tn5 mutant showed significantly reduced tolerance to oxidative stress, but its survival within macrophages was not impaired. Unlike Escherichia coli, the ksgA::Tn5 mutant did not display a cold-sensitivity phenotype; however, it showed resistance to kasugamycin and increased susceptibility to chloramphenicol. To the best of our knowledge, this is the first report showing the role of ksgA in S. Enteritidis virulence in chickens, tolerance to high osmolarity, and altered susceptibility to kasugamycin and chloramphenicol.  相似文献   

10.
The accumulation of somatic mitochondrial DNA (mtDNA) mutations is implicated in aging and common diseases of the elderly, including cancer and neurodegenerative disease. However, the mechanisms that influence the frequency of somatic mtDNA mutations are poorly understood. To develop a simple invertebrate model system to address this matter, we used the Random Mutation Capture (RMC) assay to characterize the age-dependent frequency and distribution of mtDNA mutations in the fruit fly Drosophila melanogaster. Because oxidative stress is a major suspect in the age-dependent accumulation of somatic mtDNA mutations, we also used the RMC assay to explore the influence of oxidative stress on the somatic mtDNA mutation frequency. We found that many of the features associated with mtDNA mutations in vertebrates are conserved in Drosophila, including a comparable somatic mtDNA mutation frequency (∼10−5), an increased frequency of mtDNA mutations with age, and a prevalence of transition mutations. Only a small fraction of the mtDNA mutations detected in young or old animals were G∶C to T∶A transversions, a signature of oxidative damage, and loss-of-function mutations in the mitochondrial superoxide dismutase, Sod2, had no detectable influence on the somatic mtDNA mutation frequency. Moreover, a loss-of-function mutation in Ogg1, which encodes a DNA repair enzyme that removes oxidatively damaged deoxyguanosine residues (8-hydroxy-2′-deoxyguanosine), did not significantly influence the somatic mtDNA mutation frequency of Sod2 mutants. Together, these findings indicate that oxidative stress is not a major cause of somatic mtDNA mutations. Our data instead suggests that somatic mtDNA mutations arise primarily from errors that occur during mtDNA replication. Further studies using Drosophila should aid in the identification of factors that influence the frequency of somatic mtDNA mutations.  相似文献   

11.
Mammalian NOTCH1-4 receptors are all associated with human malignancy, although exact roles remain enigmatic. Here we employ glp-1(ar202), a temperature-sensitive gain-of-function C. elegans NOTCH mutant, to delineate NOTCH-driven tumor responses to radiotherapy. At ≤20°C, glp-1(ar202) is wild-type, whereas at 25°C it forms a germline stem cell⁄progenitor cell tumor reminiscent of human cancer. We identify a NOTCH tumor phenotype in which all tumor cells traffic rapidly to G2⁄M post-irradiation, attempt to repair DNA strand breaks exclusively via homology-driven repair, and when this fails die by mitotic death. Homology-driven repair inactivation is dramatically radiosensitizing. We show that these concepts translate directly to human cancer models.  相似文献   

12.
Mitochondrial DNA (mtDNA) contains higher steady-state levels of oxidative damage and mutates at rates significantly greater than nuclear DNA. Oxidative lesions in mtDNA are removed by a base excision repair (BER) pathway. All mtDNA repair proteins are nuclear encoded and imported. Most mtDNA repair proteins so far discovered are either identical to nuclear DNA repair proteins or isoforms of nuclear proteins arising from differential splicing. Regulation of mitochondrial BER is therefore not expected to be independent of nuclear BER, though the extent to which mitochondrial BER is regulated with respect to mtDNA amount or damage is largely unknown. Here we have measured DNA BER activities in lysates of mitochondria isolated from human 143B TK osteosarcoma cells that had been depleted of mtDNA (ρ0) or not (wt). Despite the total absence of mtDNA in the ρ0 cells, a complete mitochondrial BER pathway was present, as demonstrated using an in vitro assay with synthetic oligonucleotides. Measurement of individual BER protein activities in mitochondrial lysates indicated that some BER activities are insensitive to the lack of mtDNA. Uracil and 8-oxoguanine DNA glycosylase activities were relatively insensitive to the absence of mtDNA, only about 25% reduced in ρ0 relative to wt cells. Apurinic/apyrimidinic (AP) endonuclease and polymerase γ activities were more affected, 65 and 45% lower, respectively, in ρ0 mitochondria. Overall BER activity in lysates was also about 65% reduced in ρ0 mitochondria. To identify the limiting deficiencies in BER of ρ0 mitochondria we supplemented the BER assay of mitochondrial lysates with pure uracil DNA glycosylase, AP endonuclease and/or the catalytic subunit of polymerase γ. BER activity was stimulated by addition of uracil DNA glycosylase and polymerase γ. However, no addition or combination of additions stimulated BER activity to wt levels. This suggests that an unknown activity, factor or interaction important in BER is deficient in ρ0 mitochondria. While nuclear BER protein levels and activities were generally not altered in ρ0 cells, AP endonuclease activity was substantially reduced in nuclear and in whole cell extracts. This appeared to be due to reduced endogenous reactive oxygen species (ROS) production in ρ0 cells, and not a general dysfunction of ρ0 cells, as exposure of cells to ROS rapidly stimulated increases in AP endonuclease activities and APE1 protein levels.  相似文献   

13.
Fifty strains representing 38 species of the genus Legionella were examined for biofilm formation on glass, polystyrene, and polypropylene surfaces in static cultures at 25°C, 37°C, and 42°C. Strains of Legionella pneumophila, the most common causative agent of Legionnaires' disease, were found to have the highest ability to form biofilms among the test strains. The quantity, rate of formation, and adherence stability of L. pneumophila biofilms showed considerable dependence on both temperature and surface material. Glass and polystyrene surfaces gave between two- to sevenfold-higher yields of biofilms at 37°C or 42°C than at 25°C; conversely, polypropylene surface had between 2 to 16 times higher yields at 25°C than at 37°C or 42°C. On glass surfaces, the biofilms were formed faster but attached less stably at 37°C or 42°C than at 25°C. Both scanning electron microscopy and confocal laser scanning microscopy revealed that biofilms formed at 37°C or 42°C were mycelial mat like and were composed of filamentous cells, while at 25°C, cells were rod shaped. Planktonic cells outside of biofilms or in shaken liquid cultures were rod shaped. Notably, the filamentous cells were found to be multinucleate and lacking septa, but a recA null mutant of L. pneumophila was unaffected in its temperature-regulated filamentation within biofilms. Our data also showed that filamentous cells were able to rapidly give rise to a large number of short rods in a fresh liquid culture at 37°C. The possibility of this biofilm to represent a novel strategy by L. pneumophila to compete for proliferation among the environmental microbiota is discussed.  相似文献   

14.
The present study aimed at the long-term storage of rumen protozoa as living cells in liquid nitrogen. The two-step or interrupted slow freezing procedure was used to cryopreserve six of the dominant species of rumen ciliates isolated from monofaunated animals, Dasytricha ruminantium, Entodinium caudatum, Epidinium ecaudatum caudatum, Eudiplodinium maggii, Isotricha prostoma, and Polyplastron multivesiculatum. We optimized the first step in the interrupted slow freezing procedure, from the extracellular ice nucleation temperature to the holding temperature, and studied the effects of the cooling rates on survival. In addition to the nature of the cryoprotectant (dimethyl sulfoxide), the equilibration temperature and equilibration time (25°C and 5 min, respectively), and the holding time at subzero temperature (45 min) recommended previously (S. Kišidayová, J. Microbiol. Methods 22:185-192, 1995), we found that a holding temperature of −30°C, a cooling rate from extracellular ice nucleation temperature to holding temperature of between 1.2°C/min and 2.5°C/min, depending on the ciliate, and rumen juice as the freezing and thawing medium markedly improved the survival rate. Survival rates determined after 2 weeks in liquid nitrogen were 100% for Isotricha, 98% for Dasytricha, 85% for Epidinium, 79% for Polyplastron, 63% for Eudiplodinium, and 60% for Entodinium. They were not significantly modified after a period of 1 year in liquid nitrogen. Four of the five ciliate species cryopreserved for 8 months in liquid nitrogen successfully colonized the rumen when inoculated into defaunated animals. These results have made it possible to set up a bank of cryopreserved rumen protozoa.  相似文献   

15.
A hypermodified base (Y-Thy) replaces 20% of the thymine (Thy) in mature DNA of Bacillus subtilis phage SP10. Two noncomplementing hypermodification-defective (hmd) mutants are described. At 30°C, hmd phage carried out a normal program, but at temperatures of ≥37°C, the infection process was nonproductive. When cells were infected at 37°C with hmd phage, DNA synthesis started at its usual time (12 min), proceeded at about half the normal rate for 6 to 8 min, and then stopped or declined manyfold. All, or nearly all, of the DNA made under hmd conditions consisted of fully hypermodified parental DNA strands H-bonded to unhypermodified nascent strands. The reduced levels of DNA synthesis observed under hmd conditions were accompanied by weak expression of late genes. A sucrose gradient analysis of SP10 hmd+ replicating DNA intermediates was made. Two intermediates, called VG and F, were identified. VF consisted of condensed DNA complexed to protein; VF also contained negatively supercoiled domains covalently joined to relaxed regions. F was composed of linear concatenates from which mature DNA was cleaved. None of those intermediates was evident in cells infected at 37°C with hmd phage. Shiftup experiments were performed wherein cells infected with hmd phage at 30°C were shifted to 37°C at a time when replication was well under way. DNA synthesis stopped or declined manyfold 10 min after shiftup. The hmd DNA made after shiftup was conserved as a form sedimentationally equivalent to the F intermediate, but little mature DNA was evident. It is proposed that Y-Thy is required for replication and DNA maturation because certain key proteins involved with these processes interact preferentially with hypermodified DNA.  相似文献   

16.
It is well established that L-proline has several roles in the biology of trypanosomatids. In Trypanosoma cruzi, the etiological agent of Chagas'' disease, this amino acid is involved in energy metabolism, differentiation processes and resistance to osmotic stress. In this study, we analyzed the effects of interfering with L-proline metabolism on the viability and on other aspects of the T. cruzi life cycle using the proline analogue L- thiazolidine-4-carboxylic acid (T4C). The growth of epimastigotes was evaluated using different concentrations of T4C in standard culture conditions and at high temperature or acidic pH. We also evaluated possible interactions of this analogue with stress conditions such as those produced by nutrient starvation and oxidative stress. T4C showed a dose-response effect on epimastigote growth (IC50 = 0.89±0.02 mM at 28°C), and the inhibitory effect of this analogue was synergistic (p<0.05) with temperature (0.54±0.01 mM at 37°C). T4C significantly diminished parasite survival (p<0.05) in combination with nutrient starvation and oxidative stress conditions. Pre-incubation of the parasites with L-proline resulted in a protective effect against oxidative stress, but this was not seen in the presence of the drug. Finally, the trypomastigote bursting from infected mammalian cells was evaluated and found to be inhibited by up to 56% when cells were treated with non-toxic concentrations of T4C (between 1 and 10 mM). All these data together suggest that T4C could be an interesting therapeutic drug if combined with others that affect, for example, oxidative stress. The data also support the participation of proline metabolism in the resistance to oxidative stress.  相似文献   

17.
Nucleotide excision repair plays a crucial role in removing many types of DNA adducts formed by UV light and chemical carcinogens. We have examined the interactions of Escherichia coli UvrABC nuclease proteins with three site-specific C8 guanine adducts formed by the carcinogens 2-aminofluorene (AF), N-acetyl-2-acetylaminofluorene (AAF) and 1-nitropyrene (1-NP) in a 50mer oligonucleotide. Similar to the AF and AAF adducts, the 1-NP-induced DNA adduct contains an aminopyrene (AP) moiety covalently linked to the C8 position of guanine. The dissociation constants for UvrA binding to AF–, AAF– and AP–DNA adducts, determined by gel mobility shift assay, are 33 ± 9, 8 ± 2 and 23 ± 9 nM, respectively, indicating that the AAF adduct is recognized much more efficiently than the other two. Incision by UvrABC nuclease showed that AAF–DNA was cleaved ~2-fold more efficiently than AF– or AP–DNA (AAF > AF ≈ AP), even though AP has the largest molecular size in this group. However, an opened DNA structure of six bases around the adduct increased the incision efficiency for AF–DNA (but not for AP–DNA), making it equivalent to that for AAF–DNA. These results are consistent with a model in which DNA damage recognition by the E.coli nucleotide excision repair system consists of two sequential steps. It includes recognition of helical distortion in duplex DNA followed by recognition of the type of nucleotide chemical modification in a single-stranded region. The difference in incision efficiency between AF– and AAF–DNA adducts in normal DNA sequence, therefore, is a consequence of their difference in inducing structural distortions in DNA. The results of this study are discussed in the light of NMR solution structures of these DNA adducts.  相似文献   

18.
Anthropogenic ozone depletion has led to a 2–5% increase in ultraviolet B radiation (UVBR) levels reaching the earth''s surface. Exposure to UVBR causes harmful DNA damage in amphibians, but this is minimized by DNA repair enzymes such as thermally sensitive cyclobutane pyrimidine dimer (CPD)-photolyase, with cool temperatures slowing repair rates. It is unknown whether amphibian species differ in the repair response to a given dose of UVBR across temperatures. We reared larvae of three species (Limnodynastes peronii, Limnodynastes tasmaniensis and Platyplectrum ornatum) at 25°C and acutely exposed them to 80 µW cm−2 UVBR for 2 h at either 20°C or 30°C. UVBR-mediated DNA damage was measured as larvae repaired damage in photoreactive light at their exposure temperatures. Cool temperatures increased DNA damage in two species and slowed DNA repair rate in P. ornatum. The magnitude of DNA damage incurred from UVBR was species-specific. Platyplectrum ornatum had the lowest CPDs and DNA repair rates, and the depressive effects of low temperature on photorepair were greater in L. tasmaniensis. Considering the susceptibility of most aquatic organisms to UVBR, this research highlighted a need to consider the complexity of species-specific physiology when forecasting the influence of changing UVBR and temperature in aquatic ecosystems.  相似文献   

19.
8-Oxoguanine-DNA glycosylase 1 (OGG1), with intrinsic AP lyase activity, is the major enzyme for repairing 7,8-dihydro-8-oxoguanine (8-oxoG), a critical mutagenic DNA lesion induced by reactive oxygen species. Human OGG1 excised the damaged base from an 8-oxoG·C-containing duplex oligo with a very low apparent kcat of 0.1 min–1 at 37°C and cleaved abasic (AP) sites at half the rate, thus leaving abasic sites as the major product. Excision of 8-oxoG by OGG1 alone did not follow Michaelis–Menten kinetics. However, in the presence of a comparable amount of human AP endonuclease (APE1) the specific activity of OGG1 was increased ~5-fold and MichaelisMenten kinetics were observed. Inactive APE1, at a higher molar ratio, and a bacterial APE (Nfo) similarly enhanced OGG1 activity. The affinity of OGG1 for its product AP·C pair (Kd ~ 2.8 nM) was substantially higher than for its substrate 8-oxoG·C pair (Kd ~ 23.4 nM) and the affinity for its final β-elimination product was much lower (Kd ~ 233 nM). These data, as well as single burst kinetics studies, indicate that the enzyme remains tightly bound to its AP product following base excision and that APE1 prevents its reassociation with its product, thus enhancing OGG1 turnover. These results suggest coordinated functions of OGG1 and APE1, and possibly other enzymes, in the DNA base excision repair pathway.  相似文献   

20.
Ovarian carcinoma (OC) is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR) pathways are involved in resistance of OC patients to platinum chemotherapy. Selected DDR signals were evaluated in two human ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/C30) to platinum treatment as well as in peripheral blood mononuclear cells (PBMCs) from OC patients, sensitive (n = 7) or resistant (n = 4) to subsequent chemotherapy. PBMCs from healthy volunteers (n = 9) were studied in parallel. DNA damage was evaluated by immunofluorescence γH2AX staining and comet assay. Higher levels of intrinsic DNA damage were found in A2780 than in A2780/C30 cells. Moreover, the intrinsic DNA damage levels were significantly higher in OC patients relative to healthy volunteers, as well as in platinum-sensitive patients relative to platinum-resistant ones (all P<0.05). Following carboplatin treatment, A2780 cells showed lower DNA repair efficiency than A2780/C30 cells. Also, following carboplatin treatment of PBMCs ex vivo, the DNA repair efficiency was significantly higher in healthy volunteers than in platinum-resistant patients and lowest in platinum-sensitive ones (t1/2 for loss of γH2AX foci: 2.7±0.5h, 8.8±1.9h and 15.4±3.2h, respectively; using comet assay, t1/2 of platinum-induced damage repair: 4.8±1.4h, 12.9±1.9h and 21.4±2.6h, respectively; all P<0.03). Additionally, the carboplatin-induced apoptosis rate was higher in A2780 than in A2780/C30 cells. In PBMCs, apoptosis rates were inversely correlated with DNA repair efficiencies of these cells, being significantly higher in platinum-sensitive than in platinum-resistant patients and lowest in healthy volunteers (all P<0.05). We conclude that perturbations of DNA repair pathways as measured in PBMCs from OC patients correlate with the drug sensitivity of these cells and reflect the individualized response to platinum-based chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号