首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most microbes live in spatially structured communities (e.g., biofilms) in which they interact with their neighbors through the local exchange of diffusible molecules. To understand the functioning of these communities, it is essential to uncover how these local interactions shape community-level properties, such as the community composition, spatial arrangement, and growth rate. Here, we present a mathematical framework to derive community-level properties from the molecular mechanisms underlying the cell-cell interactions for systems consisting of two cell types. Our framework consists of two parts: a biophysical model to derive the local interaction rules (i.e. interaction range and strength) from the molecular parameters underlying the cell-cell interactions and a graph based model to derive the equilibrium properties of the community (i.e. composition, spatial arrangement, and growth rate) from these local interaction rules. Our framework shows that key molecular parameters underlying the cell-cell interactions (e.g., the uptake and leakage rates of molecules) determine community-level properties. We apply our model to mutualistic cross-feeding communities and show that spatial structure can be detrimental for these communities. Moreover, our model can qualitatively recapitulate the properties of an experimental microbial community. Our framework can be extended to a variety of systems of two interacting cell types, within and beyond the microbial world, and contributes to our understanding of how community-level properties emerge from microscopic interactions between cells.  相似文献   

2.
Summary The isolation of related genes with evolutionary conserved motifs by the application of polymerase chain reaction-based molecular biology techniques, or from database searching strategies, has facilitated the identification of new members of protein families. Many of these protein molecules will be involved in protein-protein interactions (e.g. growth factors, receptors, adhesion molecules), since such interactions are intrinsic to virtually every cellular process. However, the precise biological function and specific binding partners of these novel proteins are frequently unknown, hence they are known as ‘orphan’ molecules. Complementary technologies are required for the identification of the specific ligands or receptors for these and other orphan proteins (e.g., antibodies raised against crude biological extracts or whole cells). We describe herein several alternative strategies for the identification, purification and characterisation of orphan peptide and protein molecules, specifically the synergistic use of micropreparative HPLC and biosensor techniques. These authors made equivalent contributions.  相似文献   

3.
Sterol molecules are essential for maintaining the proper structure and function of eukaryotic cell membranes. The influence of cholesterol (the principal sterol of higher animals) on the lipid bilayer properties was extensively studied by both experimental and simulation methods. In contrast, the effect of ergosterol (the principal fungal sterol) on the membrane structure and dynamics is much less recognized. This work presents the results of comparative molecular dynamics simulation of the hydrated dimyristoylphosphatidylcholine bilayer containing approximately 25 mol % of cholesterol or ergosterol. A detailed analysis of the molecular properties (e.g., bilayer thickness, lipid order, diffusion, intermolecular interactions, etc.) of both sterol-induced liquid-ordered membrane phases is presented. Presence of sterols in the membrane significantly changes its property, especially fluidity and molecular packing. Moreover, in accordance with the experiments, our calculations show that, compared to cholesterol, ergosterol has higher ordering effect on the phospholipid acyl chains. This different influence on the properties of the lipid bilayer stems from differences in conformational freedom of sterol side chains. Additionally, obtained models of lipid membranes containing human and fungal sterols, constituting the result of our work, can be also utilized in other chemotherapeutic studies on interaction of selected ligands (e.g., antifungal compounds) with membranes.  相似文献   

4.
The thermodynamic properties of protein solutions are determined by the molecular interactions involving both solvent and solute molecules. A quantitative understanding of the relationship would facilitate more systematic procedures for manipulating the properties in a process environment. In this work the molecular basis for the osmotic second virial coefficient, B22, is studied; osmotic effects are critical in membrane transport, and the value of B22 has also been shown to correlate with protein crystallization behavior. The calculations here account for steric, electrostatic, and short-range interactions, with the structural and functional anisotropy of the protein molecules explicitly accounted for. The orientational dependence of the protein interactions is seen to have a pronounced effect on the calculations; in particular, the relatively few protein-protein configurations in which the apposing surfaces display geometric complementarity contribute disproportionately strongly to B22. The importance of electrostatic interactions is also amplified in these high-complementarity configurations. The significance of molecular recognition in determining B22 can explain the correlation with crystallization behavior, and it suggests that alteration of local molecular geometry can help in manipulating protein solution behavior. The results also have implications for the role of protein interactions in biological self-organization.  相似文献   

5.
Investigations of the conformations of carbohydrates, their analogues and their molecular mimics are described, with emphasis on structural and functional information that can be gained by NMR spectroscopic techniques in combination with molecular modeling. The transferred nuclear Overhauser effect (trNOE) has been employed to determine the bound conformations of carbohydrates and other bioactive molecules in complex with protein receptors. The corresponding experiments in the rotating frame (trROE) and selective editing experiments (e.g., QUIET-NOESY) are used to eliminate indirect cross-relaxation pathways (spin diffusion), thereby minimizing errors in the data used for calculation of conformations. Saturation transfer difference NMR experiments reveal detailed information about intermolecular contacts between ligand and protein. Computational techniques are integrated with NMR-derived information to construct structural models of these bioactive molecules and of their complexes with proteins. Recent investigations into the nature of molecular mimicry with regard to protein-ligand interactions are described, along with applications in determining the mode of action of enzyme inhibitors. The results are relevant for the design of the next generation of drug and vaccine candidates.  相似文献   

6.
Regardless of the differences in primary amino acid sequences, protein molecules in a number of conformational states behave as polymer homologues, allowing speculations as to the volume interactions being a driving force in formation of equilibrium structures. For instance, both native and molten globules exhibit key features of polymer globules, where the fluctuations of the molecular density are expected to be much less than the molecular density itself. Protein molecules in the compact denatured (pre-molten globule) states possess properties of squeezed coils. In fact, even high concentrations of strong denaturants (e.g., urea and GdmCl) more likely constitute bad solvents for protein chains. Thus, globular proteins are probably never random coils without positional correlations and biological polypeptide chains represent the macromolecular coils below a critical point even under harsh denaturing conditions. Several implications of these findings to protein folding are discussed.  相似文献   

7.
A cell plated on a two-dimensional substrate forms adhesions with that surface. These adhesions, which consist of aggregates of various proteins, are thought to be important in mechanosensation, the process by which the cell senses and responds to the mechanical properties of the substrate (e.g., stiffness). On the basis of experimental measurements, we model these proteins as idealized molecules that can bind to the substrate in a strain-dependent manner and can undergo a force-dependent state transition. The model forms molecular aggregates that are similar to adhesions. Substrate stiffness affects whether a simulated adhesion is initially formed and how long it grows, but not how that adhesion grows or shrinks. Our own experimental tests support these predictions, suggesting that the mechanosensitivity of adhesions is an emergent property of a simple molecular-mechanical system.  相似文献   

8.
The structure of hyaluronan was investigated in water/dimethyl sulphoxide mixtures by using high-field n.m.r. and space-filling molecular models. The secondary structure previously established in detail in 'dry' dimethyl sulphoxide [Heatley, Scott & Hull (1984) Biochem. J. 220, 197-205] undergoes changes on addition of water, compatible with the incorporation of a water bridge between the uronate carboxylate and acetamido NH groups. Molecular models show that such a configuration is highly probable, and saturation-transfer experiments yield rates of NH proton exchange that support this proposed structure. The existence of two distinct stable configurations for hyaluronan, in water-rich and water-poor conditions respectively, may have biological implications, e.g. during its biosynthesis in cell membranes. There are extensive hydrophobic regions in both forms, which may be important for interactions with e.g., membranes, proteins and itself.  相似文献   

9.
The isolation of related genes with evolutionary conserved motifs by the application ofpolymerase chain reaction-based molecular biology techniques, or from database searchingstrategies, has facilitated the identification of new members of protein families. Many of theseprotein molecules will be involved in protein–protein interactions (e.g. growth factors,receptors, adhesion molecules), since such interactions are intrinsic to virtually every cellularprocess. However, the precise biological function and specific binding partners of these novelproteins are frequently unknown, hence they are known as orphan molecules.Complementary technologies are required for the identification of the specific ligands orreceptors for these and other orphan proteins (e.g., antibodies raised against crude biologicalextracts or whole cells). We describe herein several alternative strategies for the identification,purification and characterisation of orphan peptide and protein molecules, specifically thesynergistic use of micropreparative HPLC and biosensor techniques.  相似文献   

10.
11.
Harsh conditions (e.g., mortality and stress) reduce population growth rates directly; secondarily, they may reduce the intensity of interactions between organisms. Near-exclusive focus on the secondary effect of these forms of harshness has led ecologists to believe that they reduce the importance of ecological interactions, such as competition, and favor coexistence of even ecologically very similar species. By examining both the costs and the benefits, we show that harshness alone does not lessen the importance of species interactions or limit their role in community structure. Species coexistence requires niche differences, and harshness does not in itself make coexistence more likely. Fluctuations in environmental conditions (e.g., disturbance, seasonal change, and weather variation) also have been regarded as decreasing species interactions and favoring coexistence, but we argue that coexistence can only be favored when fluctuations create spatial or temporal niche opportunities. We argue that important diversity-promoting roles for harsh and fluctuating conditions depend on deviations from the assumptions of additive effects and linear dependencies most commonly found in ecological models. Such considerations imply strong roles for species interactions in the diversity of a community.  相似文献   

12.
The shape of macromolecules can be approximated by filling models, if both hydrodynamic and scattering properties should be predicted. Modeling of complex biological macromolecules, such as oligomeric proteins, or of molecule details calls for usage of many beads to preserve the original features. However, the calculation of precise values for structural and hydrodynamic parameters has to consider many problems and pitfalls. Among these, the huge number of beads required for modeling details and the choice of appropriate volume corrections for the calculation of intrinsic viscosities are pestering problems to date. As a first step to tackle these problems, various tests with multibead models (ellipsoids of different axial ratios) were performed. The agreement of the predicted molecular properties with those derived from whole-body approaches can be used as evaluation criteria. Modification of previously available versions of García de la Torre’s program HYDRO allows hydrodynamic modeling of macromolecules composed of a maximum of about 11,000 beads. Moreover, application of our recently suggested “reduced volume correction” enables a fast and efficient anticipation of intrinsic viscosities. Correct parameter predictions were obtained for all models analyzed. The data obtained were compared to the results of calculations based on HYDRO programs available to the public. The calculations revealed some unexpected results and allowed founded conclusions of general importance for precise calculations on multibead models (e.g., the requirement of calculations in the double-precision mode).  相似文献   

13.
We present a qualitative computer graphics approach to the characterization of forces important to the assembly of beta domains that should have general utility for examining protein interactions and assembly. In our approach, the nature of the molecular surface buried by the domain contacts, the specificity of the residue-to-residue interactions, and the identity of electrostatic, hydrophobic, and hydrophilic interactions are elucidated. These techniques are applied to the beta barrel domains of Cu, Zn superoxide dismutase (SOD), immunoglobulin Fab, and tomato bushy stunt virus coat protein (TBSV), a plant viral capsid protein. By looking at a set of proteins having different numbers of interacting beta domains, we have been able to see some of the variety and also some of the patterns common to these assembled domains. Strong beta domain interactions (identified by their biochemical integrity) are apparently due to chemical, electrostatic, and shape complementarity of the molecular surfaces buried from interaction with solvent molecules. Although the amount of hydrophobic buried surface area appears to correlate with the strength of the interaction, electrostatic forces appear to be important in both stabilizing and destabilizing specific contacts. In TBSV, analysis of electrostatic interactions may help explain mechanisms of subunit accommodation to different environments, particle expansion, and pathways of assembly. The possible molecular basis for observed differences in the stability and flexibility of the domain complexes is discussed.  相似文献   

14.
Understanding the functional roles of all the molecules in cells is an ultimate goal of modern biology. An important facet is to understand the functional contributions from intermolecular interactions, both within a class of molecules (e.g. protein–protein) or between classes (e.g. protein‐DNA). While the technologies for analyzing protein–protein and protein–DNA interactions are well established, the field of protein–lipid interactions is still relatively nascent. Here, we review the current status of the experimental and computational approaches for detecting and analyzing protein–lipid interactions. Experimental technologies fall into two principal categories, namely solution‐based and array‐based methods. Computational methods include large–scale data‐driven analyses and predictions/dynamic simulations based on prior knowledge of experimentally identified interactions. Advances in the experimental technologies have led to improved computational analyses and vice versa, thereby furthering our understanding of protein–lipid interactions and their importance in biological systems.  相似文献   

15.
The structural aspects of protein functions, e.g., molecular recognition such as enzyme-substrate and antibody-antigen interactions, are elucidated in terms of dehydration and atomic interactions. When a protein interacts with some target molecule, water molecules at the interacting regions of both molecules are removed, with loss of the hydration free energy, but gaining atomic interactions between atoms of the contact sites in both molecules. The free energies of association originating from the dehydration and interactions between the atoms can be computed from changes in the accessible surface areas of the atoms involved. The free energy due to interactions between atomic groups at the contact sites is estimated as the sum of those estimated from the changes in the accessible surface area of 7 atomic groups, assuming that the interactions are proportional to the change of the area. The chain enthalpies and entropies evaluated from experimental thermodynamic properties and hydration quantities at the standard temperature for 10 proteins were available to determine the proportional constants for the atomic groups. This method was applied to the evaluation of association constants for the dimerization of proteins and the formation of proteolytic enzyme-inhibitor complexes, and the computed constants were in agreement with the experimental ones. However, the method is not accurate enough to account quantitatively for the change in the thermal stability of mutants of T4 lysozyme. Nevertheless, this method provides a way to elucidate the interactions between molecules in solution.  相似文献   

16.
A free energy function, combining molecular mechanics energy with empirical solvation and entropic terms, is used for ranking near-native conformations that occur in the conformational search steps of homology modeling, i.e., side-chain search and loop closure calculations. Correlations between the free energy and RMS deviation from the X-ray structure are established. It is shown that generally both molecular mechanics and solvation/entropic terms should be included in the potential. The identification of near-native backbone conformations is accomplished primarily by the molecular mechanics term that becomes the dominant contribution to the free energy if the backbone is even slightly strained, as frequently occurs in loop closure calculations. Both terms become equally important if a sufficiently accurate backbone conformation is found. Finally, the selection of the best side-chain positions for a fixed backbone is almost completely governed by the solvation term. The discriminatory power of the combined potential is demonstrated by evaluating the free energies of protein models submitted to the first meeting on Critical Assessment of techniques for protein Structure Prediction (CASP1), and comparing them to the free energies of the native conformations.  相似文献   

17.
The viability of a biological system depends upon careful regulation of the rates of various processes. These rates have limits imposed by intrinsic chemical or physical steps (e.g., diffusion). These limits can be expanded by interactions and dynamics of the biomolecules. For example, (a) a chemical reaction is catalyzed when its transition state is preferentially bound to an enzyme; (b) the folding of a protein molecule is speeded up by specific interactions within the transition-state ensemble and may be assisted by molecular chaperones; (c) the rate of specific binding of a protein molecule to a cellular target can be enhanced by mechanisms such as long-range electrostatic interactions, nonspecific binding and folding upon binding; (d) directional movement of motor proteins is generated by capturing favorable Brownian motion through intermolecular binding energy; and (e) conduction and selectivity of ions through membrane channels are controlled by interactions and the dynamics of channel proteins. Simple physical models are presented here to illustrate these processes and provide a unifying framework for understanding speed attainment and regulation in biomolecular systems.  相似文献   

18.
Ab initio quantum chemical (Gaussian82) and molecular mechanics (AMBER2.0) computational techniques are employed to investigate the interaction of two anions (formate an dimethylphosphate) and a central divalent metal cation (magnesium or calcium). These systems are models for the essential GDP binding unit of the G-proteins (e.g., EF-Tu or the ras oncogene proteins) and for protein/phospholipid interactions, both of which are mediated by divalent metal cations. Various levels of hydration are utilized to examine coordination of differences between magnesium and calcium ions. Two different orientations of formate and dimethyl phosphate in direct ion contact with a magnesium ion and two waters of hydration were energy minimized with both quantum and molecular mechanics techniques. The structures and energy differences between the two orientations determined by either of the computational techniques are similar. Magnesium ion has a strong propensity to assume six coordination whereas calcium ion preferentially assumes a coordination greater than six. Likewise, water molecules attached to magnesium ion are held more rigidly than those of calcium ion, thus calcium ion is more accommodating in the exchange of water for negative ligands.  相似文献   

19.
20.
The physical nature underlying intermolecular interactions between two rod-like winter flounder antifreeze protein (AFP) molecules and their implication for the mechanism of antifreeze function are examined in this work using molecular dynamics simulations, augmented with free energy calculations employing a continuum solvation model. The energetics for different modes of interactions of two AFP molecules is examined in both vacuum and aqueous phases along with the water distribution in the region encapsulated by two antiparallel AFP backbones. The results show that in a vacuum two AFP molecules intrinsically attract each other in the antiparallel fashion, where their complementary charge side chains face each other directly. In the aqueous environment, this attraction is counteracted by both screening and entropic effects. Therefore, two nearly energetically degenerate states, an aggregated state and a dissociated state, result as a new aspect of intermolecular interaction in the paradigm for the mechanism of action of AFP. The relevance of these findings to the mechanism of function of freezing inhibition in the context of our work on Antarctic cod antifreeze glycoprotein (Nguyen et al., Biophysical Journal, 2002, Vol. 82, pp. 2892-2905) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号