首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellular uptake and washout of the two principal boron neutron capture therapy (BNCT) agents, borocaptate sodium (BSH) and borono-phenylalanine (BPA), were monitored on-line, noninvasively, using nuclear magnetic resonance (NMR) spectroscopy. The uptake and washout of inorganic borate (B(i)) was also followed for comparison. M2R mouse melanoma cells grown on polystyrene microspheres were perfused inside the NMR sample tube. (11)B NMR was used to detect the presence of B(i), BSH and BPA, and (19)F NMR was applied to detect fluorinated BPA ((19)F-BPA). The results revealed chemical modifications of BSH due to spontaneous formation of the borocaptate dimer, BSSB, in the culture medium. BPA readily formed a complex with glucose contained in the culture medium but was also converted in the cells to a yet unidentified compound in a reaction that probably involves the hydrolysis of BPA and the release of B(i). The cellular accumulation ratio for BPA was significantly higher than 1 and was also significantly higher than that for BSH. On the other hand, the cellular retention time observed for BSH was much longer than for BPA, indicating a strong trapping of BSH in cells.  相似文献   

2.
10B-enriched L-p-boronophenylalanine (BPA) is one of the compounds used in boron neutron capture therapy (BNCT). In this study, several variations of nuclear magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) were applied to investigate the uptake, clearance and metabolism of the BPA-fructose complex (BPA-F) in normal mouse kidneys, rat oligodendroglioma xenografts, and rat blood. Localized 1H MRS was capable of following the uptake and clearance of BPA-F in mouse kidneys with temporal resolution of a few minutes, while 1H MRSI was used to image the BPA distribution in the kidney with a spatial resolution of 9 mm3. The results also revealed significant dissociation of the BPA-F complex to free BPA. This finding was corroborated by 1H and 11B NMR spectroscopy of rat blood samples as well as of tumor samples excised from mice after i.v. injection of BPA-F. This investigation demonstrates the feasibility of using 1H MRS and MRSI to follow the distribution of BPA in vivo, using NMR techniques specifically designed to optimize BPA detection. The implementation of such procedures could significantly improve the clinical efficacy of BNCT.  相似文献   

3.
The efficiency of boron neutron capture therapy (BNCT) for malignant gliomas depends on the selective and absolute accumulation of (10)B atoms in tumor tissues. Only two boron compounds, BPA and BSH, currently can be used clinically. However, the detailed distributions of these compounds have not been determined. Here we used secondary ion mass spectrometry (SIMS) to determine the histological distribution of (10)B atoms derived from the boron compounds BSH and BPA. C6 tumor-bearing rats were given 500 mg/kg of BPA or 100 mg/kg of BSH intraperitoneally; 2.5 h later, their brains were sectioned and subjected to SIMS. In the main tumor mass, BPA accumulated heterogeneously, while BSH accumulated homogeneously. In the peritumoral area, both BPA and BSH accumulated measurably. Interestingly, in this area, BSH accumulated distinctively in a diffuse manner even 800 microm distant from the interface between the main tumor and normal brain. In the contralateral brain, BPA accumulated measurably, while BSH did not. In conclusion, both BPA and BSH each have advantages and disadvantages. These compounds are considered to be essential as boron delivery agents independently for clinical BNCT. There is some rationale for the simultaneous use of both compounds in clinical BNCT for malignant gliomas.  相似文献   

4.
The application of a low-background neutron autoradiographic technique for determining 10B concentration and intracellular distribution in mammalian tissue is described. Knowledge of 10B concentration and distribution on a cellular level is necessary to evaluate the effects of irradiation when using the 10B(n,alpha)7Li reaction in experimental therapeutic procedures. Conventional boron analysis is not capable of extracting this information. The use of freeze-dried tissues, dry-mounted on nuclear emulsion, makes the technique applicable to water-soluble compounds used in previous clinical trials, as well as to water-insoluble proteins. Absolute concentrations of 10B in the form of sodium pentaborate were measured in mouse spleen, liver, kidney, muscle, tumor, and brain, 30 minutes after intraperitoneal injection, and compared to results from three other laboratories using conventional analysis. Boron concentrations similar to those used in previous clinical trials were evaluated to demonstrate the feasibility of the method. No intranuclear or extracellular concentration was observed; evidence is given to demonstrate the absence of leaching of the water-soluble compound. The method described will be useful in evaluating the newer boron compounds attached to proteins. The intracellular distribution of these compounds is of particular interest, since it is not clear that all proteins are capable of penetrating cell walls.  相似文献   

5.
Boron neutron capture therapy (BNCT) is based on selective accumulation of 10B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg 10B/kg) was administered to tumor-bearing hamsters. Groups of 3–5 animals were killed humanely at nine time-points, 3–12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24–35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7–11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.  相似文献   

6.
Abstract  Sodium borocaptate (BSH) is widely used for boron neutron capture therapy (BNCT) of brain tumors. One drawback is the large uptake by the liver causing a decrease of its availability at the tumor region as well as bringing about toxicity problems. A novel carborane-based compound containing a boron payload very similar to that of BSH has been synthesized and tested on rat glioma (C6) cells, hepatoma tissue culture (HTC) cells, and hepatocytes. The newly synthesized system consists of an o-carborane unit (C2B10H11, o-CB) conjugated to a glutamine residue through a proper spacer, namely, o-CB-Gln. As compared with BSH, it showed the same uptake by C6 cells, but a 50% decrease in uptake by HTC cells and an 80% decrease in uptake by healthy hepatocytes. On this basis o-CB-Gln appears an interesting candidate for BNCT of brain tumors as it is expected to have a therapeutic index analogous to that of BSH accompanied by a much lower liver toxicity. Graphical Abstract  A novel carborane based compound, consisting in an o-carborane unit (C2B10H11, o-CB) conjugated to a glutamine residue through a proper spacer (namely o-CB-Gln) has been synthesized, characterized and tested on rat glioma (C6), hepatoma (HTC) and hepatocytes. As compared to sodium borocaptate (BSH), widely used for boron neutron capture therapy (BNCT) of brain tumors, the newly synthesized system showed the same uptake by C6 cells, but a 50% decrease by HTC and 80% decrease by healthy hepatocytes. On this basis o-CB-Gln appears an interesting candidate for BNCT of brain tumors as it is expected to have a therapeutic index analogous to BSH accompanied by a much lower liver toxicity.   相似文献   

7.
A boron-enriched streptavidin has been prepared by chemical conjugation of a boron-rich compound, B(12)H(11)SH(2)(-) (BSH), to a genetically engineered streptavidin variant. The streptavidin variant used has 20 cysteine residues per molecule, derived from a C-terminal cysteine stretch consisting of five cysteine residues per subunit. Because natural streptavidin has no cysteine residues, the reactive sulfhydryl groups of the cysteine stretch serve as unique conjugation sites for sulfhydryl chemistry. BSH was conjugated irreversibly to the sulfhydryl groups of the streptavidin variant via a sulfhydryl-specific homobifunctional chemical cross-linker. Quantitative boron analysis indicates that the resulting streptavidin-BSH conjugate carries approximately 230 boron atoms/molecule. This indicates that the chemical conjugation of BSH to the streptavidin variant was highly specific and efficient because this method should allow the conjugation of a maximum of 240 boron atoms/streptavidin molecule. This boron-enriched streptavidin retained both full biotin-binding ability and tetrameric structure, suggesting that the conjugation of BSH has little, if any, effect on the fundamental properties of streptavidin. This boron-enriched streptavidin should be very useful as a component of targetable boron carriers for neutron capture therapy of cancer. For example, a monoclonal antibody against a tumor-associated antigen can be attached tightly to the boron-enriched streptavidin upon simple biotinylation, and the resulting conjugate could be used to target boron to tumor cells on which the tumor-associated antigen is overexpressed.  相似文献   

8.
The transformed C6 glial cells in cultures were treated with sodium mercaptoborate (Na(2)B(12)H(11)SH, BSH), a carrier of atomic targets ((10)B) of thermal neutrons for the neutron capture therapy of brain tumors. As shown by light microscopy, the therapeutic dose of BSH (100 microg/ml) did not alter the gross morphology and growth of the population of cells within a 72 h treatment interval. Electron microscopic analysis of these cells revealed activation of nucleoli and, occasionally, enlarged and bifurcated mitochondria. After 200 microg BSH/ml and 72 h treatment, growth of the cell population was inhibited and ultrastructural changes became more profound. They included condensation of chromatin and its allocation to the nuclear envelope which formed deeper invaginations. Mitochondria further increased in size and were characterized by slim or angular cristae. Moreover, in circumscribed segments of some of the slightly swollen mitochondria their cristae disappeared or were reduced to fine pouch-like structures localized near the continuous outer membrane, suggestive for a non-destructive restructuring of the inner mitochondrial membrane. The smooth pinocytotic vesicles near the plasma membrane, lysosomes and heterogeneous dense bodies were more frequent. The revealed subcellular targets of BSH may initiate the development of pharmacological protocols aimed to further improve the tolerance to BSH by the healthy tissues of patients undergoing BNCT of brain tumors, e.g. by intervention into the oxidative stress triggered likely by the altered mitochondria.  相似文献   

9.
Boron-containing agents play a key role in successful boron neutron capture therapy (BNCT). Icosahedral boron cluster-Arg-Gly-Asp (RGD) peptide conjugates were designed, synthesized, and evaluated for the biodistribution to develop tumor-selective boron carriers. Integrin αvβ3 is an attractive target for anti-tumor drug delivery because of its specific expression in proliferating endothelial and tumor cells of various origins. We, therefore, selected a c(RGDfK) moiety recognizing αvβ3 as an active tumor-targeting device to conjugate with icosahedral boron-10 clusters, disodium mercaptododecaborate (BSH) or o-carborane as a thermal neutron-sensitizing unit. Preparation of o-carborane derivatives involved microwave irradiation, and resulted in high yields in a short time. An in vitro cell adhesion assay on αvβ3-positive U87MG and SCCVII cells demonstrated the high binding affinity of conjugates to integrin αvβ3 (IC(50)=0.19-2.66 μM). Biodistribution experiments using SCCVII-bearing mice indicated that GPU-201 showed comparable tumor uptake and a significantly longer retention in tumors compared with BSH. These results suggest that GPU-201 is a promising candidate for use in BNCT.  相似文献   

10.
Selective irradiation of the vasculature of the rat spinal cord was used in this study, which was designed specifically to address the question as to whether it is the endothelial cell or the glial progenitor cell that is the target responsible for late white matter necrosis in the CNS. Selective irradiation of the vascular endothelium was achieved by the intraperitoneal (ip) administration of a boron compound known as BSH (Na(2)B(12)H(11)SH), followed by local irradiation with thermal neutrons. The blood-brain barrier is known to exclude BSH from the CNS parenchyma. Thirty minutes after the ip injection of BSH, the boron concentration in blood was 100 microg (10)B/ g, while that in the CNS parenchyma was below the detection limit of the boron analysis system, <1 microg (10)B/g. An ex vivo clonogenic assay of the O2A (oligodendrocyte-type 2 astrocyte) glial progenitor cell survival was performed 1 week after irradiation and at various times during the latent period before white matter necrosis in the spinal cord resulted in myelopathy. One week after 4.5 Gy of thermal neutron irradiation alone (approximately one-third of the dose required to produce a 50% incidence of radiation myelopathy), the average glial progenitor cell surviving fraction was 0.03. The surviving fraction of glial progenitor cells after a thermal neutron irradiation with BSH for a comparable effect was 0.46. The high level of glial progenitor cell survival after irradiation in the presence of BSH clearly reflects the lower dose delivered to the parenchyma due to the complete exclusion of BSH by the blood-brain barrier. The intermediate response of glial progenitor cells after irradiation with thermal neutrons in the presence of a boron compound known as BPA (p-dihydroxyboryl-phenylalanine), again for a dose that represents one-third the ED(50) for radiation-induced myelopathy, reflects the differential partition of boron-10 between blood and CNS parenchyma for this compound, which crosses the blood-brain barrier, at the time of irradiation. The large differences in glial progenitor survival seen 1 week after irradiation were also maintained during the 4-5-month latent period before the development of radiation myelopathy, due to selective white matter necrosis, after irradiation with doses that would produce a high incidence of radiation myelopathy. Glial progenitor survival was similar to control values at 100 days after irradiation with a dose of thermal neutrons in the presence of BSH, significantly greater than the ED(100), shortly before the normal time of onset of myelopathy. In contrast, glial progenitor survival was less than 1% of control levels after irradiation with 15 Gy of thermal neutrons alone. This dose of thermal neutrons represents the approximate ED(90-100) for myelopathy. The response to irradiation with an equivalent dose of X rays (ED(90): 23 Gy) was intermediate between these extremes as it was to thermal neutrons in the presence of BPA at a slightly lower dose equivalent to the approximate ED(60) for radiation myelopathy. The conclusions from these studies, performed at dose levels approximately iso-effective for radiation-induced myelopathy as a consequence of white matter necrosis, were that the large differences observed in glial progenitor survival were directly related to the dose distribution in the parenchyma. These observations clearly indicate the relative importance of the dose to the vascular endothelium as the primary event leading to white matter necrosis.  相似文献   

11.
12.
The study of intracellular transport pathways at epithelial cell barriers that line diverse tissue sites is fundamental to understanding tissue homeostasis. A major impediment to investigating such processes at the subcellular level has been the lack of imaging approaches that support fast three-dimensional (3D) tracking of cellular dynamics in thick cellular specimens. Here, we report significant advances in multifocal plane microscopy and demonstrate 3D single molecule tracking of rapid protein dynamics in a 10 micron thick live epithelial cell monolayer. We have investigated the transferrin receptor (TfR) pathway, which is not only essential for iron delivery but is also of importance for targeted drug delivery across cellular barriers at specific body sites, such as the brain that is impermeable to blood-borne substances. Using multifocal plane microscopy, we have discovered a cellular process of intercellular transfer involving rapid exchange of Tf molecules between two adjacent cells in the monolayer. Furthermore, 3D tracking of Tf molecules at the lateral plasma membrane has led to the identification of different modes of endocytosis and exocytosis, which exhibit distinct temporal and intracellular spatial trajectories. These results reveal the complexity of the 3D trafficking pathways in epithelial cell barriers. The methods and approaches reported here can enable the study of fast 3D cellular dynamics in other cell systems and models, and underscore the importance of developing advanced imaging technologies to study such processes.  相似文献   

13.
Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.  相似文献   

14.
Salinity aggravates B toxicity symptoms in several plant species. In the present study the interactive effects of B toxicity and salinity stresses on the subcellular distribution of boron, cations and proteins in basal and apical leaf sections of wheat were investigated. High B supply increased total B concentrations in all leaf parts, but values remained below 25 mg B kg?1 dry weight (DW) in basal sections, whereas they reached more than 600 mg B kg?1 DW in leaf tips. In basal leaf sections intercellular soluble B concentrations closely reflected the external supply, whereas intracellular soluble B concentrations remained lower by a factor of two, indicating some retention of excess B in the apoplast. Combined salinity and B toxicity stresses significantly increased soluble B concentrations in inter‐ and intracellular compartments of basal leaf sections in comparison with either stress alone, probably related to salinity‐induced changes in water status. The combined stresses also induced quantitative and qualitative changes in inter‐, but not intracellular protein composition. Most obvious was the induction of a 25 kDa protein and an increase in amount of a 33 kDa protein. It is suggested that these changes might be due to structural modifications of the cell wall. The concentration of soluble boron in cells is proposed to be an indicator of boron toxicity.  相似文献   

15.
The coherent phase microscopy (CPM) provides a convenient and non-invasive tool for imaging cells and intracellular organelles. In this article, we consider the applications of the CPM method to imaging different cells and energy-transducing intracellular organelles (mitochondria and chloroplasts). Experimental data presented below demonstrate that the optical path length difference of the object, which is the basic optical parameter measured by the CPM method, can serve as an indicator of metabolic states of different biological objects at cellular and subcellular levels of structural organization.  相似文献   

16.
The first control of a malignant tumor in vivo by porphyrin- mediated boron neutron capture therapy (BNCT) is described. In mice bearing implanted EMT-6 mammary carcinomas, boron uptake using a single injection of either p-boronophenylalanine (BPA) or mercaptoundecahydrododecaborane (BSH) was compared with either a single injection or multiple injections of the carboranylporphyrin CuTCPH. The BSH and BPA doses used were comparable to the highest doses of these compounds previously administered in a single injection to rodents. For BNCT, boron concentrations averaged 85 microg (10)B/g in the tumor and 4 microg (10)B/g in blood 2 days after the last of six injections (over 32 h) that delivered a total of 190 microg CuTCPH/g body weight. During a single 15, 20, 25 or 30 MW-min exposure to the thermalized neutron beam of the Brookhaven Medical Research Reactor, a tumor received average absorbed doses of approximately 39, 52, 66 or 79 Gy, respectively. A long-term (>200 days) tumor control rate of 71% was achieved at a dose of 66 Gy with minimal damage to the leg. Equivalent long-term tumor control by a single exposure to 42 Gy X rays was achieved, but with greater damage to the irradiated leg.  相似文献   

17.
The coherent phase microscopy (CPM) provides a convenient and non-invasive tool for imaging cells and intracellular organelles. In this article, we consider the applications of the CPM method to imaging different cells and energy-transducing intracellular organelles (mitochondria and chloroplasts). Experimental data presented below demonstrate that the optical path length difference of the object, which is the basic optical parameter measured by the CPM method, can serve as an indicator of metabolic states of different biological objects at cellular and subcellular levels of structural organization.  相似文献   

18.
The objective of the present study was to construct epidermal growth factor receptor (EGFR) targeting cetuximab-immunoliposomes (ILs) for targeted delivery of boron compounds to EGFR(+) glioma cells for neutron capture therapy. The ILs were synthesized by using a novel cholesterol-based membrane anchor, maleimido-PEG-cholesterol (Mal-PEG-Chol), to incorporate cetuximab into liposomes by either surface conjugation or a post-insertion method. For post-insertion, the transfer efficiency of MAb conjugates from micelles to liposome was examined at varying temperatures, mPEG2000-DSPE ratios, and micelle-to-liposome lipid ratios. Following this, the cetuximab-ILs were evaluated for targeted delivery of the encapsulated boron anion, dodecahydro-closo-dodecaborate (2-) (B12H122-), to human EGFR gene transfected F98EGFR glioma cells as potential delivery agents for boron neutron capture therapy (BNCT). In addition, cellular uptake of cetuximab-ILs, encapsulating a fluorescence dye, was analyzed by confocal fluorescence microscopy and flow cytometry, and boron content was quantified by ICP-MS. Much greater ( approximately 8-fold) cellular uptake of boron was obtained using cetuximab-ILs in EGFR(+) F98EGFR compared with nontargeted human IgG-ILs. On the basis of these observations, we have concluded that cholesterol can serve as an effective anchor for MAb in liposomes, and cetuximab-ILs are potentially useful delivery vehicles for BNCT of gliomas.  相似文献   

19.
Provided that a selective accumulation of 10B-containing compounds is introduced in tumor cells, following irradiation by thermal neutrons produces high-LET alpha-particles (4He) and recoiling lithium-7 (7Li) nuclei emitted during the capture of thermalized neutrons (0.025 eV) from 10B. To estimate the biological effectiveness of this boron neutron capture [10B(n,α)7Li] reaction, the chromosome aberration assay and the flow cytometry apoptosis assay were applied. At the presence of the clinically used compounds BSH (sodium borocaptate) and BPA (p-boronophenylalanine), human lymphocytes were irradiated by sub-thermal neutrons. For analyzing chromosome aberrations, human lymphocytes were exposed to thermally equivalent neutron fluences of 1.82 × 1011 cm?2 or 7.30 × 1011 cm?2 (corresponding to thermal neutron doses of 0.062 and 0.248 Gy, respectively) in the presence of 0, 10, 20, and 30 ppm of BSH or BPA. Since the kerma coefficient of blood increased by 0.864 × 10?12 Gy cm2 per 10 ppm of 10B, the kerma coefficients in blood increase from 0.34 × 10?12 cm2 (blood without BSH or BPA) up to 2.93 × 10?12 Gy cm2 in the presence of 30 ppm of 10B. For the 10B(n, α)7Li reaction, linear dose–response relations for dicentrics with coefficients α = 0.0546 ± 0.0081 Gy?1 for BSH and α = 0.0654 ± 0.0075 Gy?1 for BPA were obtained at 0.062 Gy as well as α = 0.0985 ± 0.0284 Gy?1 for BSH and α = 0.1293 ± 0.0419 Gy?1 for BPA at 0.248 Gy. At both doses, the corresponding 10B(n, α)7Li reactions from BSH and BPA are not significantly different. A linear dose–response relation for dicentrics also was obtained for the induction of apoptosis by the 10B(n, α)7Li reaction at 0.248 Gy. The linear coefficients α = 0.0249 ± 0.0119 Gy?1 for BSH and α = 0.0334 ± 0.0064 Gy?1 for BPA are not significantly different. Independently of the applied thermal neutron doses of 0.062 Gy or 0.248 Gy, the 10B(n, α)7Li reaction from 30 ppm BSH or BPA induced an apparent RBE of about 2.2 for the production of dicentrics as compared to exposure to thermal neutrons alone. Since the apparent RBE value is defined as the product of the RBE of a thermal neutron dose alone times a boron localization factor which depends on the concentration of a 10B-containing compound, this localization factor determines the biological effectiveness of the 10B(n, α)7Li reaction.  相似文献   

20.
The chimeric anti-CD30 monoclonal antibody cAC10, linked to the antimitotic agents monomethyl auristatin E (MMAE) or F (MMAF), produces potent and highly CD30-selective anti-tumor activity in vitro and in vivo. These drugs are appended via a valine-citrulline (vc) dipeptide linkage designed for high stability in serum and conditional cleavage and putative release of fully active drugs by lysosomal cathepsins. To characterize the biochemical processes leading to effective drug delivery, we examined the intracellular trafficking, internalization, and metabolism of the parent antibody and two antibody-drug conjugates, cAC10vc-MMAE and cAC10vc-MMAF, following CD30 surface antigen interaction with target cells. Both cAC10 and its conjugates bound to target cells and internalized in a similar manner. Subcellular fractionation and immunofluorescence studies demonstrated that the antibody and antibody-drug conjugates entering target cells migrated to the lysosomes. Trafficking of both species was blocked by inhibitors of clathrin-mediated endocytosis, suggesting that drug conjugation does not alter the fate of antibody-antigen complexes. Incubation of cAC10vc-MMAE or cAC10vc-MMAF with purified cathepsin B or with enriched lysosomal fractions prepared by subcellular fractionation resulted in the release of active, free drug. Cysteine protease inhibitors, but not aspartic or serine protease inhibitors, blocked antibody-drug conjugate metabolism and the ensuing cytotoxicity of target cells and yielded enhanced intracellular levels of the intact conjugates. These findings suggest that in addition to trafficking to the lysosomes, cathepsin B and perhaps other lysosomal cysteine proteases are requisite for drug release and provide a mechanistic basis for developing antibody-drug conjugates cleavable by intracellular proteases for the targeted delivery of anti-cancer therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号