首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of parathyroid hormone fragments produced by cathepsin D   总被引:2,自引:0,他引:2  
Cleavage of parathyroid hormone by cathepsin D was studied. Four primary products were detected and separated by high performance liquid chromatography. Two of the fragments are fluorescent and therefore contain residue 23 (tryptophan). These fragments are NH2-terminal in origin. The other two cross-react with antisera directed against COOH-terminal portions of the hormone; they are the complementary COOH-terminal fragments. Microsequencing and amino acid analysis showed that the two COOH-terminal fragments are 35-84 and 38-84 bovine parathyroid hormone. By CNBr cleavage and amino acid analysis, the two NH2-terminal fragments were shown to be the complementary 1-37 and 1-34 fragments. The 1-37 fragment is transitory and is rapidly hydrolyzed to 1-34, so that only relatively small amounts are detected at any one time. However, 34-84 was not converted to 38-84, although cleavage at other sites in the COOH-terminal fragments was observed with more exhaustive digestion. The 1-34 fragment appears to be the final product of the action of cathepsin D on parathyroid hormone. Both enzymatically produced NH2-terminal fragments were fully active in the renal membrane adenylyl cyclase assay system.  相似文献   

2.
Monolayer cultures of bovine parathyroid cells or fresh gland slices were incubated with radioactive amino acids in order to study the formation and metabolism of parathormone (PTH). PTH, secretory protein I, and COOH-terminal fragments of PTH were all released into media within 30 min, most strongly in the first hour after synthesis. Peptides in tissue, cells, and media were separated using reverse-phase high performance liquid chromatography. In eluates of media, six radioactive peaks were prominent. The first four and the sixth were immunoreactive in a COOH-terminal specific PTH radioimmunoassay, but only the sixth was reactive in an NH2-terminal specific assay. Under conditions where recovery of PTH(1-34) was quantitative, gel filtration of media was used to show that no NH2-terminal fragments of PTH were secreted. Sequence analyses of secreted COOH-terminal peptides indicated that the NH2 termini of the first three peaks corresponded to residues 43, 37, and 34 of PTH. The fourth peak contained a mixture of two peptides with NH2 termini at residues 24 and 28 of PTH. The fifth could not be identified; the sixth was PTH. Cleavages at the 23-24 bond of PTH occurred within minutes of the formation of PTH itself, and the other peptides were formed more slowly. Mandatory cleavage of PTH at the 23-24 peptide bond would destroy the biological activity of the hormone on kidney and bone, a situation consistent with the possibility that intracellular PTH metabolism participates in secretory regulation. The results showed that different peptides were generated in parathyroid cells than were previously shown to be produced by cathepsin B or D. The results suggest that the proteolytic pathway which results in the secretion of PTH fragments is nonlysosomal in nature.  相似文献   

3.
4.
We have reported previously that parathyroid hormone (PTH) acts on cultured bone cells to stimulate creatine kinase (CK) activity and [3H]thymidine incorporation into DNA via phosphoinositide turnover, in addition to its other actions via increased cyclic AMP production. We also found that mid-region fragments of PTH stimulate [3H]thymidine incorporation into avian chondrocytes. In the present study of mammalian systems, we demonstrate differential effects of defined synthetic PTH fragments on CK activity and DNA synthesis, as compared with cyclic AMP production, in osteoblast-enriched embryonic rat calvaria cell cultures, in an osteoblast-like clone of rat osteosarcoma cells (ROS 17/2.8) and in chondroblasts from rat epiphysial cartilage cell cultures. Unlike full-length bovine (b)PTH-(1-84) or the fully effective shorter fragment human (h)PTH-(1-34), fragments lacking the N-terminal region of the hormone did not increase cyclic AMP formation, whereas they did stimulate increases in both DNA synthesis and CK activity. Moreover, the PTH fragment hPTH-(28-48) at 10 microM inhibited the increase in cyclic AMP caused by 10 nM-bPTH-(1-84). The increase of CK activity in ROS 17/2.8 cells caused by bPTH-(1-84) or hPTH-(28-48) was completely inhibited by either cycloheximide or actinomycin D, as was shown previously for rat calvaria cell cultures. These results indicated the presence of a functional domain of PTH in the central part of the molecule which exerts its mitogenic-related effects on osteoblast- and chondroblast-like cells in a cyclic AMP-independent manner. Since cyclic AMP formation by PTH leads to bone resorption, specific mid-region fragments of PTH might prove suitable for use in vivo to induce bone formation without concomitant resorption.  相似文献   

5.
The degrading activity for human parathyroid hormone [hPTH-(1-84)] was studied in a rat osteoblast-like osteosarcoma cell line UMR106. At 37 C,UMR106 cells degraded hPTH-(1-84) into fragments in a time-dependent manner, which was shown by a radioimmunoassay with the use of antibody recognizing the C-terminal and middle regions of PTH molecule, whereas the degradation was completely suppressed at 4 C and failed to occur in the absence of the cells. The Lineweaver-Burk plot of this degrading activity at 37 C showed a fairly good linearity and gave a Km value of 5.1 X 10(-7) M. Reverse-phase high-performance liquid chromatography (HPLC) analysis of immunoreactive PTH fragments in the medium disclosed two peaks aside from intact PTH, indicating a limited PTH-hydrolyzing activity of UMR106 cells cleaving the molecule between at least two separate positions. This study suggests the possible involvement of osteoblasts on the metabolism of intact PTH.  相似文献   

6.
The N-terminal 1–34 fragment of parathyroid hormone (PTH) is fully active in vitro and in vivo and it can reproduce all biological responses characteristic of the native intact PTH. Recently, analogues of PTH(1–11) fragments with helicity-enhancing substitutions have been demonstrated to yield potent analogues of PTH(1–34). The work describes the synthesis, biological activity and structure of analogues of the best modified PTH sequence H-Aib-Val-Aib-Glu-Ile-Gln-Leu-Nle-His-Gln-Har-NH2 (I). In particular, the effect of the Ala/Aib substitution at positions 1 and 3 as well as of the replacement of Nle in position 8 with d-Nle, l-(αMe)-Nle and d-(αMe)-Nle was studied. The resulting peptides were characterized structurally by CD spectroscopy, solution NMR and MD, and in vitro for activity with respect to the cognate receptor, parathyroid hormone receptor.  相似文献   

7.
The stimulation of DNA synthesis in primary cell cultures of chicken chondrocytes by parathyroid hormone was studied by assaying [3H]thymidine incorporation into DNA. Optimal assay conditions were determined by varying cell age, plating density, and incubation time. Under these conditions DNA synthesis was significantly stimulated by parathyroid hormone (PTH) and some of its fragments: cells treated with human (h)PTH(1-84), bovine (b)PTH(1-34) and [Nle8,18,Tyr34]bPTH(3-34)amide and hPTH(13-34) displayed 2.6-fold enhanced [3H]thymidine incorporation in a dose-dependent manner. The fragment hPTH(28-48) led to a similar stimulation, whereas [Tyr43]hPTH(43-68) and [Tyr52,Asp76]hPTH(52-84) had no effect. Using a series of synthetic hPTH peptides covering the central region of the hormone molecule (residues 25-47), we could delimitate further this putative mitogenic functional domain to a core region between amino acid residues 30 and 34. The effect of PTH on [3H]thymidine incorporation could not be mimicked by forskolin, indicating that the corresponding signal is not mediated by cAMP. It is, however, inhibited by EGTA and cannot be provoked in the absence of calcium ions in the medium. Therefore, the results presented indicate a hitherto unidentified functional domain of PTH in the central part of the molecule which exerts its mitogenic effect on chondrocytes in a cAMP-independent manner but seems to involve calcium ions for signal transduction.  相似文献   

8.
Circular dichroism (CD) studies of parathyroid hormone (PTH), its oxidized forms, and some fragments of the hormone are described. The CD spectrum of native PTH (84 amino acids) and the active fragment, 1-34 PTH, suggests that most of the secondary structure resides in the amino-terminal segment of this hormone. Oxidation of the methionine residue at position 18 has a small impact on secondary structure, whereas oxidation of the methionine at position 8 produces substantial changes. Oxidation of both methionines produces secondary structure changes that are greater than the sum of those seen upon oxidation of the individual methionines. The CD spectrum for the 3-34 fragment of PTH is identical to that of the 1-34 fragment, and that of the 7-34 fragment is only slightly different. The spectra of the 13-34 and 19-34 fragments are markedly altered from that of the 1-34 peptide, and those of the 9-84 and 19-84 fragments of native PTH are significantly different from the intact hormone. Computer-assisted estimates of secondary structure content, and difference spectra, were utilized to evaluate the secondary structure content of the peptides. These results suggest that residues 6-12 are important in formation of helical secondary structure and that a reverse turn may be important for the folding of PTH into a conformation with high affinity for receptors. Residues 1 and 2 appear to make no contribution to the secondary structure and may be directly involved in activation of receptors.  相似文献   

9.
Cathepsin D localization was studied in the liver of white rats by ultrastructural cytochemistry. It was shown that the product of reaction was present in lysosomes of hepatocytes, Kupffer's and endothelial cells and in fibroblasts from portal tracts am small granules or their conglomerate of different electron density. The lowest activity of cathepsin D was observed in hepatocytes, the most intensive reaction--in Kupffer cells. The extracellular activity of cathepsin D in vivo was revealed. It means that besides participation in intracellular degradation of different proteins, cathepsin D is secreted to extracellular space by liver cells (hepatocytes, Kupffer cells, fibroblasts) and it may participate in catabolism of intercellular matrix.  相似文献   

10.
11.
Most ligands which are taken up by macrophages are transported to lysosomes where they are degraded to their constituents by a concert of acid hydrolases. This process requires a number of intracellular events which result in the transport of ligands from light density endosomes to the more dense lysosomes. In contrast, our studies have shown that macrophages may process some incoming ligands in endosomes (Diment, S., and Stahl, P. D. (1985) J. Biol. Chem. 260, 15311-15317) and that cathepsin D, an aspartyl protease, is localized in these organelles (Diment, S., Leech, M. S., and Stahl, P. D. (1988) J. Biol. Chem. 263, 6901-6907). Using rabbit alveolar macrophages, which can be subjected to subcellular fractionation, we have traced the intracellular transport and processing of bovine parathyroid hormone (PTH-(1-84]. We present evidence that macrophages internalize PTH-(1-84). Once in endosomes the hormone is cleaved to fragments which include a bioactive peptide, PTH-(1-34), and then the fragments are returned to the extracellular medium, without delivery to lysosomes. The entire cycle from initial binding to release of PTH-(1-34) is achieved within 10-15 min, a time period consistent with findings in vivo. Our data provide evidence for a novel route for processing of an endocytosed ligand.  相似文献   

12.
Pseudomonas exotoxin (PE) is a three-domain toxin which is cleaved by a cellular protease within cells and then reduced to generate two prominent fragments (Ogata, M., Chaudhary, V. K., Pastan, I., and FitzGerald, D. J. (1990) J. Biol. Chem. 265, 20678-20685). The N-terminal fragment is 28 kDa in size and contains the binding domain. The 37-kDa C-terminal fragment, which translocates to the cytosol, contains the translocation domain and the ADP-ribosylation domain. Cleavage followed by reduction is essential for toxicity since mutant forms of the toxin that cannot be cleaved by cells are nontoxic. Previous results with these mutants suggest that cleavage occurred in an arginine-rich (arginine residues are at positions 274, 276, and 279) disulfide loop near the beginning of the translocation domain, but the exact site of cleavage was not determined. Since very few molecules of the 37-kDa fragment are generated within cells it was not possible to determine the site of cleavage by performing a conventional N-terminal sequence analysis of the 37-kDa fragment. Two experimental approaches were used to overcome this limitation. First, existing amino acids near the cleavage sites were replaced with methionine residues; this was followed by the addition of [35S]methionine-labeled versions of these toxins to cells. The pattern of radioactive toxin fragments recovered from the cells indicated that the toxin was cleaved either just before or just after Arg279. Second, [3H]leucine-labeled toxin was produced and added to the cells. Sequential Edman degradations were performed on the small amount of radioactive 37-kDa fragment that could be recovered from toxin-treated cells. A peak of radioactivity in the fifth fraction indicated that leucine was the 5th amino acid on the C-terminal side of the cleavage site. This result confirmed that cleavage was between Arg279 and Gly280.  相似文献   

13.
Summary Light and electron microscopic localization of cathepsin D in rat liver was investigated by post-embedding immunoenzyme and protein A-gold techniques. By light microscopy, cytoplasmic granules of parenchymal cells and Kupffer cells were stained for cathepsin D. Weak staining was also noted in sinusoidal endothelial cells. In the parenchymal cells many of positive granules located around bile canaliculi. In the Kupffer cells and the endothelial cells, diffuse staining was noted in the cytoplasm in addition to granular staining. By electron microscopy, gold particles representing the antigenic sites for cathepsin D were seen in typical secondary lysosomes and some multivesicular bodies of the parenchymal cells and Kupffer cells. The lysosomes of the endothelial cells and fat-storing cells were weakly labeled. Quantitative analysis of the labeling density in the lysosomes of these three types of cells demonstrated that the lysosomes of parenchymal cells and Kupffer cells are main containers of cathepsin D in rat liver. The results suggest that cathepsin D functions in the intracellular digestive system of parenchymal cells and Kupffer cells but not so much in that of the endothelial cells.  相似文献   

14.
S Yokota  H Tsuji  K Kato 《Histochemistry》1985,82(2):141-148
Light and electron microscopic localization of cathepsin D in rat liver was investigated by post-embedding immunoenzyme and protein A-gold techniques. By light microscopy, cytoplasmic granules of parenchymal cells and Kupffer cells were stained for cathepsin D. Weak staining was also noted in sinusoidal endothelial cells. In the parenchymal cells many of positive granules located around bile canaliculi. In the Kupffer cells and the endothelial cells, diffuse staining was noted in the cytoplasm in addition to granular staining. By electron microscopy, gold particles representing the antigenic sites for cathepsin D were seen in typical secondary lysosomes and some multivesicular bodies of the parenchymal cells and Kupffer cells. The lysosomes of the endothelial cells and fat-storing cells were weakly labeled. Quantitative analysis of the labeling density in the lysosomes of these three types of cells demonstrated that the lysosomes of parenchymal cells and Kupffer cells are main containers of cathepsin D in rat liver. The results suggest that cathepsin D functions in the intracellular digestive system of parenchymal cells and Kupffer cells but not so much in that of the endothelial cells.  相似文献   

15.
Pseudomonas exotoxin (PE) was incubated with cells and extracts analyzed for processed fragments. PE was proteolytically cleaved to produce a N-terminal 28-kDa and a C-terminal 37-kDa fragment, the latter being composed of a portion of domain II and all of domain III (the ADP-ribosylating domain). Cleavage was evident at 10 min after toxin addition and endosome preparations contained the processed fragments. Initially, the two fragments were linked by a disulfide bond. Subsequently, the 37-kDa fragment was reduced and translocated to the cytosol where it inactivated protein synthesis. Cytosol from toxin-treated cells was greatly enriched in the 37-kDa fragment. The 37-kDa fragment appears to be essential for toxicity since mutant PE molecules that do not produce this fragment, or cannot deliver it to the cytosol, fail to kill cells.  相似文献   

16.
16K prolactin (PRL) is the name given to the 16-kDa N-terminal fragment obtained by proteolysis of rat PRL by tissue extracts or cell lysates, in which cathepsin D was identified as the candidate protease. Based on its antiangiogenic activity, 16K PRL is potentially a physiological inhibitor of tumor growth. Full-length human PRL (hPRL) was reported to be resistant to cathepsin D, suggesting that antiangiogenic 16K PRL may be physiologically irrelevant in humans. In this study, we show that hPRL can be cleaved by cathepsin D or mammary cell extracts under the same conditions as described earlier for rat PRL, although with lower efficiency. In contrast to the rat hormone, hPRL proteolysis generates three 16K-like fragments, which were identified by N-terminal sequencing and mass spectrometry as corresponding to amino acids 1-132 (15 kDa), 1-147 (16.5 kDa), and 1-150 (17 kDa). Biochemical and mutagenetic studies showed that the species-specific digestion pattern is due to subtle differences in primary and tertiary structures of rat and human hormones. The antiangiogenic activity of N-terminal hPRL fragments was assessed by the inhibition of growth factor-induced thymidine uptake and MAPK activation in bovine umbilical endothelial cells. Finally, an N-terminal hPRL fragment comigrating with the proteolytic 17-kDa fragment was identified in human pituitary adenomas, suggesting that the physiological relevance of antiangiogenic N-terminal hPRL fragments needs to be reevaluated in humans.  相似文献   

17.
Parathyroid hormone (PTH) has been shown to bind specifically to the beta subunit of the mitochondrial ATPase on nitrocellulose blots. We have now examined this interaction further, using intact mitochondria, submitochondrial particles, and the purified F1 ATPase. With intact mitochondria, 1 microM concentrations of PTH and its biologically active 1-34 fragment activate the ATPase about 3-fold. This effect was reduced to a 1.4-fold activation with 3-34 and 7-34 fragments of the hormone, and oxidized PTH gave no detectable activity. Activation could only be observed below pH 7. PTH had no significant effect on the activity of the purified enzyme or on submitochondrial particles. However, specific binding of an iodinated PTH analog, [Nle 8,18-Tyr 34] bPTH (1-34) amide, was found with submitochondrial particles and the purified ATPase. Binding affinity with the purified enzyme was about 10(-3) that of the plasma membrane receptor, and the molar stoichiometry was close to 1:1 (PTH:intact enzyme). With submitochondrial particles the affinity was about 10-fold higher than with the purified enzyme. This binding was further examined with PTH derivatives and fragments, and compared to that seen in the plasma membrane receptor. Oxidation of methionine 18 in PTH reduced the affinity about 50%, oxidation of methionine 8 reduced the affinity 95%, and oxidation of both methionines further decreased affinity in both membranes and submitochondrial particles. However, when compared to the native hormone, the 3-34 and 7-34 PTH fragments had much higher affinity for the submitochondrial particles than for the plasma membranes. PTH also reduced chemical crosslinking of the ATP analog, p-fluorosulfonyl benzoyl 5'-adenosine, to the alpha subunit of this enzyme, but did not alter labeling of the enzyme with 3'-O-(4'-benzoyl) benzoyl ATP, suggesting that the hormone binds near a regulatory nucleotide binding site. Direct chemical crosslinking of PTH to the beta-subunit of the enzyme was attained with a cleavable, photoactivate crosslinker, sulfosuccinimidyl 2-(p-azidosalicylamido) ethyl-1,3-dithiopropionate. The crosslinked protein was cleaved with cyanogen bromide and the labeled fragments were sequenced. The labeled fragments were found to be segments of the protein which have previously been implicated as being close to the noncatalytic ATP binding sites.  相似文献   

18.
Isolated non-parenchymal cells from rat liver were separated by centrifugal elutriation into two fractions consisting of structurally intact Kupffer and endothelial cells with purities of 91 and 95%, respectively. Purified Kupffer and endothelial cells showed nearly equal specific activities for the lysosomal enzyme acid phosphatase, whereas the specific activity of cathepsin D was about 3 times higher in Kupffer cells. It was calculated that a significant amount of the cathepsin D activity in the liver is present in the Kupffer cells.  相似文献   

19.
Non-parenchymal cell suspensions were prepared from rat livers by three different methods based on a collagenase, a pronase and a combined collagenase-pronase treatment. The highest yield of Kupffer and endothelial cells was obtained with the pronase treatment. Attempts were made for a further purification of these cells by Metrizamide density gradient centrifugation after preferentially loading lysosomal structures in Kupffer cells with Triton WR 1339, Jectofer®, Neosilvol®, Zymosan or colloidal carbon. After loading with Triton WR 1339 or Jectofer®, highly purified endothelial cell suspensions were obtained, but the final Kupffer cell preparations were contaminated with about 20% of endothelial cells. Kupffer and endothelial cells purified in this way showed an altered ultrastructure and contained increased activities of the lysosomal enzymes acid phosphatase, arylsulphatase B and cathepsin D. As an alternative procedure for the purification of Kupffer and endothelial cells, a method based on centrifugal elutriation was employed. With this procedure, highly purified preparations of Kupffer or endothelial cells with a well preserved ultrastructure were obtained. Compared with endothelial cells, purified Kupffer cells had a three times higher cathepsin D activity, whereas the arylsulphatase B activity was three times higher in endothelial cells. The high cathepsin D activity in Kupffer cells could be nearly completely inhibited by the specific cathepsin D inhibitor pepstatin, which excludes a possible contribution to this activity by proteases endocytosed during the isolation of the cells.  相似文献   

20.
The effect of intensive physical exercise (swimming for 3 hours with a load of 4% body weight) on the function of hepatic, pulmonary and peritoneal macrophages has been studied in rats and mice. NBT values in alveolar and peritoneal macrophages of the experimental animals proved to be 1.5 and 1.6 times higher than in the controls. The activity of cathepsin D in the liver, lung and Kupffer cells was greater than the control values. The data obtained indicate that intensive physical exercise caused depression in phagocytic activity of Kupffer cells, the major compartment of the reticuloendothelial system, whereas a similar function in lung macrophages was even greater than in the controls and in peritoneal macrophages changed but insignificantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号