首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J D Kemp  D W Sutton  E Hack 《Biochemistry》1979,18(17):3755-3760
Nopaline synthase of sunflower (Helianthus annuus L.) crown gall tissue induced by Agrobacterium tumefaciens strain C58 or T37 (nopaline utilizers) was purified to homogeneity as judged by analytical disc gel electrophoresis. The native enzyme elutes from a column of Ultrogen AcA 34 as a single peak with an estimated molecular weight of 158,000. The dissociated enzyme migrates on NaDodSO4-polyacrylamide gels as a single band with a molecular weight of 40,000. Thus, the native enzyme appears to be composed of four equal-weight subunits. Nopaline synthesizing activity is found exclusively in crown gall tissues induced by strains of A. tumefaciens that utilize nopaline (e.g., C58 and T37). We found the same tissue specificity for the purified protein that we believe represents nopaline synthase. The results of kinetic studies of the purified enzyme are consistent with a ter-bi rapid-equilibrium random-order mechanism. Nopaline synthase is probably responsible for the in vivo synthesis of both N2-(1,3-dicarboxypropyl)arginine (nopaline) and N2-(1,3-dicarboxypropyl)ornithine (ornaline) in crown gall tissues since substrate specificities and Km values do not change during purification.  相似文献   

2.
An azoreductase has been purified to apparent homogeneity from the hepatic 105,000 x g supernatant fraction of 3-methylcholanthrene-treated rats. In the presence of sodium dodecyl sulfate, the purified enzyme preparation electrophoreses on polyacrylamide gels as a single protein band with a molecular weight of 30,000. In the absence of detergent, chromatography of the azoreductase on Sephadex G-100 gives a molecular weight of about 52,000 suggesting that the native enzyme may exist as a dimer. The purified azoreductase has a typical flavoprotein absorption spectrum and contains 2 mol of FAD/mol of enzyme. The enzyme catalyzes the reductive fission of methyl red (2'-carboxy-4-N,N-dimethylaminoazobenzene) and a structure-activity study indicates that the 2'-carboxyl group of methyl red is essential for catalysis since other structurally related analogs are totally inactive.  相似文献   

3.
The allosteric effectors of aspartate transcarbamoylase from Escherichia coli, CTP and ATP, associate with both the regulatory and the catalytic moieties of the enzyme. Studies with isolated, active subunits yield one binding site per regulatory dimer and one per catalytic trimer. Investigations of effector association with hybrid enzymes, containing either the three regulatory dimers or the two catalytic trimers in inactivated forms, indicate that the data obtained with isolated subunits can be used to analyze the binding patterns of these ligands to the native hexamer. Thus, the nonlinear Scatchard plots, characteristic of the binding of CTP and ATP to the native enzyme, can be interpreted in terms of three effector molecules associating with the regulatory subunits, and two binding to the catalytic moiety of the enzyme. Results with native protein in the presence of saturating concentrations of active site ligands support these assignments. The differences between the binding isotherms of CTP and ATP to the enzyme are due to their different affinities to the two types of subunits. The apparent half-of-the-site saturation of the regulatory moiety of aspartate transcarbamoylase supports the concept that this protein has a tendency to exist in an asymmetric state.  相似文献   

4.
Q-Enzyme, the enzyme that synthesizes the 1,6-alpha-glucosidic branch linkages of amylopectin, has been purified from potato to near homogeneity. The molecular weight of the enzyme is 85000. The active enzyme is a monomer, with a molar activity at pH 7.0 and 24 degrees C of 15. The energy of activation is 25 kJ/mol below 15 degrees C, changing sharply to 63 kJ/mol above that temperature. Enzyme activity is not affected by Mg2+ or ATP. There are about 11 readily titratable sulfhydryl groups per molecule. The evidence that the enzyme is a single protein entity, without hydrolytic activity towards amylose, contrasts with an earlier report that Q-enzyme consists of two components, a hydrolase with molecular weight 70000, and a transferase with molecular weight 20000. Q-enzyme acts on native and synthetic amyloses to give products resembling amylopectin in terms of average unit chain length, degress of beta-amylolysis and iodine stain. The profiles of the unit chains of these synthetic products are, however, different from that of native amylopectin. Additional branch linkages are introduced by Q-enzyme into potato amylopectin, but the product bears no resemblance to phytoglycogen.  相似文献   

5.
AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) has been purified to apparent homogeneity from rat muscle. The preparation exhibits a single polypeptide band with a molecular weight of 60,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme has a sedimentation coefficient of 11.3 S. Analysis by sedimentation equilibrium techniques showed the nat-ive enzyme to have a molecular weight of 238,000, whereas the enzyme, when analyzed in 6 M guanidine hydrochloride and 10 mM 2-mercaptoethanol, had a molecular weight of only 59,500. The amino acid composition of the enzyme was determined and peptide mapping was performed on a tryptic digest of S-carboxymethylated enzyme. NH2-terminal analysis by both the dansylation and cyanate procedures failed to identify a free NH2 terminus. Treatment of the enzyme with carboxypeptidase A resulted in the release of approximately 0.5 mol each of valine and leucine per 60,000 g of enzyme. The data presented indicate that hte native enzyme has a tetrameric structure consisting of four polypeptide chains each having a molecular weight of 60,000. The COOH-terminal analysis can be interpreted either as an indication of subunit heterogeneity or as a result of incomplete digestion of a -X-Leu-Val sequence at the end of a single type of polypeptide chain. Tryptic peptide maps strongly support the latter interpretation and suggest that the subunits are essentially identical.  相似文献   

6.
Two immunologically different DT diaphorases were isolated on an affinity column containing Dicumarol as ligand from the cytosol fraction of rat liver. With a specific antiserum raised in rabbits against the DT diaphorase fraction eluted from the column, the two DT diaphorases were shown with immunodiffusion methods to be present in the microsomal and mitochondrial as well as in the cytosol fraction of rat liver. The NAD(P)H oxidizing activity in the immunoprecipitates containing the two DT diaphorases was found to be inhibited by 10?4m Dicumarol but not by 10?3m 2-pivaloyl-1,3-indandione or warfarin. With the anti-DT diaphorase antiserum the two DT diaphorases were also demonstrated to be present in other organs but with a somewhat different distribution. One of them appeared predominantly in kidney and heart and the other in lung, brain, testis, and spleen. The latter DT diaphorase was also found to be retained in four 3-methylcholanthrene-induced rat hepatomas. These findings indicate different physiological functions for the two DT diaphorases which at present are unknown.  相似文献   

7.
A cytosolic flavoprotein enzyme for the protozoan, Trypanosoma cruzi, has been purified essentially to homogeneity by DEAE-cellulose and 2',5'-ADP-agarose column chromatography. The native enzyme has a molecular weight of 100,000 +/- 6,000, is composed of two identical subunits of molecular weight 52,000 +/- 1,000, and contains FAD in the ratio of 1 mol of FAD per mol of enzyme subunit. The enzyme is NADPH-dependent and is capable of reducing cytochrome c, ferricyanide, 2,6-dichloroindophenol, and menadione, but not adrenalin. It does not hydroxylate either sodium salicylate or sodium p-hydroxybenzoate, but N-methylaniline and N,N-dimethylaminobenzaldehyde-supported oxidation of NADPH has been demonstrated. Plots of initial velocity against NADPH concentration give hyperbolic curves with Km values of 6.289 X 10(-5) M. The enzyme is clearly different from the microsomal NADPH-cytochrome c reductase in its intracellular distribution, molecular weight, dimeric nature, presence of only FAD, and activity against secondary and tertiary aromatic amines.  相似文献   

8.
The thyrotropin receptor from bovine thyroid plasma membranes has been solubilized using lithium diiodosalicylate, and an assay to measure thyrotropin binding to the solubilized receptor has been developed. Both the solubilized thyrotropin receptor and the thyrotropin receptor on thyroid plasma membranes have effectively identical nonlinear Scatchard plots and negatively sloped Hill plots, i.e. both preparations have receptors which appear to exhibit a similar negatively cooperative relationship. Although the pH optimum of thyrotropin binding to the solubilized receptor is the same as that of the thyroid plasma membrane receptor, pH 6.0, the pH dependency curve of the solubilized receptor is slightly different in its outline. Thyrotropin binding to the solubilized receptor is less sensitive to salt inhibition than is binding to the thyroid plasma membrane receptor; however, optimal binding remains at 0 degrees. The relative affinities of thyrotropin and two glycoprotein hormones which can be considered structural analogs, luteinizing hormone and human chorionic gonadotropin, are 100:10:5, respectively, toward plasma membrane receptors, but 100:25:40 toward the solubilized receptors. The solubilized receptor preparation is heterogeneous in size in that it has binding components with molecular weights of 286,000, 160,000, 75,000, and 15,000 to 30,000. Tryptic digestion converts all three higher molecular weight components to the 15,000 to 30,000 molecular weight species, and the 15,000 to 30,000 molecular weight receptor component has all of the binding properties of the solubilized receptor preparation before tryptic digestion including an identical nonlinear Scatchard plot. It has the same size as and coelutes from Sephadex G-100 with a 15,000 to 30,000 molecular weight receptor released by tryptic digestion of bovine thyroid plasma membranes or tryptic digestion of bovine or dog thyroid cells in culture. The tryptic fragment of the solubilized receptor or preparations has been purified almost 250-fold by affinity chromatography on thyrotropin-Sepharose columns. The binding activity is lost when the solubilized thyrotropin receptor preparation is exposed to beads of neuraminidase-Sepharose or conconavalin A-Sepharose.  相似文献   

9.
An enzyme hydrolyzing the water-insoluble glucans produced from sucrose by Streptococcus mutans was purified from the culture concentrate of Streptomyces chartreusis strain F2 by ion-exchange chromatography on diethylaminoethyl cellulose and carboxymethyl cellulose columns and gel filtration on Bio-Gel A-1.5m. The purification achieved was 6.4-fold, with an overall yield of 27.3%. Electrophoresis of the purified enzyme protein gave a single band on a sodium dodecyl sulfate-polyacrylamide gel slab. Its molecular weight was estimated to be approximately 68,000, but there is a possibility that the native enzyme exists in an aggregated form or is an oligomer of the peptide subunits, have a molecular weight larger than 300,000. The pH optimum of the enzyme was 5.5 to 6.0, and its temperature optimum was 55 degrees C. The enzyme lost activity on heating at 65 degrees C for 10 min. The enzyme activity was completely inhibited by the presence of 1 mM Mn2+, Hg2+, Cu2+, Ag2+, or Merthiolate. The Km value for the water-insoluble glucan of S. mutans OMZ176 was an amount of glucan equivalent to 1.54 mM glucose, i.e., 0.89 mM in terms of the alpha-1,3-linked glucose residue. The purified enzyme was specific for glucans containing an alpha-1,3-glucosidic linkage as the major bond. The enzyme hydrolyzed the S. mutans water-insoluble glucans endolytically, and the products were oligosaccharides. These results indicate that the enzyme elaborated by S. chartreusis strain F2 is an endo-alpha-1,3-glucanase (EC 3.2.1.59).  相似文献   

10.
Studies of cGMP binding to both the native cyclic GMP-stimulated phosphodiesterase and to two unique isolated chymotryptic fragments lacking the catalytic domain suggest that the enzyme contains two noncatalytic cGMP-binding sites/homodimer. In the presence of high concentrations of ammonium sulfate, 2 mol of cGMP are bound/mol of cGMP-stimulated phosphodiesterase homodimer. Under these conditions, linear Scatchard plots of binding are obtained that give an apparent Kd of approximately 2 microM. The inclusion of 3-isobutyl-1-methylxanthine produces a curvilinear plot. In the absence of ammonium sulfate, the dissociation of cGMP from the holoenzyme is rapid, having a t1/2 of less than 10 s, and addition of ammonium sulfate to the incubation greatly decreases this rate of dissociation. The native enzyme is resistant to degradation by chymotrypsin in the absence of cGMP; however, in its presence, chymotrypsin treatment produces several discrete fragments. Similarly, in the presence but not in the absence of cGMP, dicyclohexylcarbodiimide causes an irreversible activation of the enzyme without cross-linking the nucleotide to the phosphodiesterase. Both observations provide evidence that a different conformation in the enzyme results from cGMP binding. Only the conformation formed upon cGMP binding is easily attacked by chymotrypsin or permanently activated by treatment with dicyclohexylcarbodiimide. One major chymotryptic cleavage site exposed by cGMP binding is at tyrosine 553, implying that this region takes part in the conformational change. Limited proteolysis experiments indicate that these noncatalytic binding sites are located within a region of internal sequence homology previously proposed to include the cGMP-binding site(s) and that they retain a high affinity and specificity for cGMP independent of the catalytic domain of the enzyme. The products formed by partial proteolysis can be separated into individual catalytically active and cGMP-binding fractions by anion exchange chromatography. Gel filtration and electrophoresis analysis of the isolated fractions suggest that the cGMP-binding peak has a dimeric structure. Moreover, it can be further resolved by polyethyleneimine high performance liquid chromatography into two peaks (Peaks IIIA and IIIB). Peak IIIA binds 2 mol of cGMP/mol of dimer with an apparent Kd of 0.2 microM. Peak IIIB, however, has greatly reduced cGMP binding. Further digestion of these fragments with cyanogen bromide show that the differences between Peaks IIIA and IIIB are due to one or more additional proteolytic nicks in IIIB that remove a few residues near its C terminus, most probably residues 523-550 or 534-550. This in turn suggests that this region is essential for cGMP-binding activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
A rapid and efficient procedure has been developed to purify phosphofructokinase from the muscle of the parasitic roundworm, Ascaris suum. The procedure can be accomplished in 1 day with a 420-fold purification and a 60% yield. The enzyme was shown to be homogeneous by two-dimensional electrophoresis, Sepharose 6B column chromatography, and high performance liquid chromatography utilizing a size exclusion column. The subunit molecular weight of the enzyme was found to be 95,000 by electrophoresis in the presence of sodium dodecyl sulfate. In solutions of low ionic strength, the native enzyme aggregated to species of higher molecular weight than did the rabbit muscle phosphofructokinase. In the presence of 0.2 M (NH4)2SO4, the minimum native molecular weight was determined to be 398,000 by high performance liquid chromatography and Sepharose 6B column chromatography. Therefore, the enzyme appears to be a tetramer with identical or near-identical subunits. The apparent isoelectric point of the enzyme was shown to be 7.3 to 7.4 by both column and gel isoelectric focusing. Amino acid analysis revealed a lower number of the aromatic residues Phe, Tyr, and Trp than in the rabbit muscle enzyme and this is in agreement with the lower extinction coefficient of E1%280 nm = 6.5. Analysis of the purified enzyme revealed 7.4 +/- 0.6 mol of phosphate/mol of enzyme.  相似文献   

12.
Saturation analysis of equilibrium binding of iodinated thyrotropin (125I-TSH) to normal human thyroid preparations yielded linear Scatchard plots under non-physiological conditions of pH 6.0 or 20 mM Tris/acetate buffer, pH 7.4. The apparent equilibrium dissociation constant of this binding was approximately 10(-8) M. By contrast, nonlinear plots were obtained under standard conditions of pH 7.4 and 40 mM Tris/acetate buffer. Resolution of the components of these curves by computer analysis revealed the presence of at least two classes of binding sites, one of which is of a low capacity and high affinity (approximately 10(-10) M) consistent with receptor binding. The other component is of a high capacity and lower affinity. Binding to non-target tissues of muscle, parathyroid, mammary carcinoma, and placenta was only demonstrable at pH 6.0 or in 20 mM Tris/acetate buffer, pH 7.4, yielding linear Scatchard plots with similar binding affinity (approximately 10(-8)M) to normal thyroid but much reduced capacity. Preincubation of thyroid tissue at 50 degrees C resulted in an apparent selective loss of the high affinity component of binding measured under standard conditions. Kinetic experiments on the dissociation of bound 125I-TSH were undertaken to determine whether the non-linearity of Scatchard plots was due to two or more classes of binding sites or negative cooperativity. It was found that the experimental determinant that is presently ascribed to a negative cooperativity phenomenon regulating receptor affinity (i.e. an enhanced dilution-induced dissociation rate in the presence of excess native hormone), although apparently hormone-specific, was demonstrated under nonphysiological binding conditions and in non-target tissue. Significantly, the phenomenon was found under conditions of pH 6.0 or 20 mM Tris where a linear Scatchard plot was obtained. The evidence thus suggests that 125I-TSH binds to heterogeneous binding sites (of which the high affinity is probably the receptor for TSH) and that the enhanced dilution-induced dissociation of bound hormone by native hormone for this system, is only a characteristic of the low affinity binding site (maybe gangliosides).  相似文献   

13.
Ferredoxin-dependent nitrite reductase of spinach has been further characterized and the relationship between this enzyme and methyl viologen-dependent nitrite reductase studied.

Purified ferredoxin nitrite reductase, having a molecular weight of 86,000, showed 2.5 times higher ferredoxin-dependent activity than methyl viologen-linked activity. Besides 4 mol of labile sulfide the enzyme contained about 2 mol of siroheme per mol. When dithionite, methyl viologen and nitrite were added, ESR signals of a heme nitrosyl complex at g = 2.14, 2.07 and 2.02 were observed. Moreover, hyperfine splitting of the signal due to 14N nuclear spin was also observed at 2.033, 2.023 and 2.013. The sole addition of hydroxylamine to the ferric enzyme also caused the same but much less intense signals with the hyperfine splitting.

On treatment of the ferredoxin nitrite reductase (native enzyme) with DEAE-Sephadex A-50 chromatography, a modified nitrite reductase having a molecular weight of 61,000 and a protein fraction having an apparent molecular weight of 24,000 were separated. The modified enzyme contained about one mol of siroheme and 4 mol of labile sulfide per mol and showed essentially the same heme ESR signals as the native enzyme. Contrary to the native enzyme, this modified enzyme accepted electrons more efficiently from methyl viologen than ferredoxin and the reduction of nitrite to ammonia catalyzed by the modified enzyme was not stoichiometric. The observed nitrite to ammonia ratio was 1 to less than 0.6. Cyanide at concentrations between 0.02 to 0.2 mm inhibited the activity of the native enzyme almost completely but the modified enzyme was inhibited only partially.

From the results obtained, it is suggested that the native ferredoxin-linked nitrite reductase consists of two components (or subunits) and removal of the light component results in formation of a modified enzyme with increased relative affinity to methyl viologen.  相似文献   

14.
Kidney alkaline phosphatase was purified to homogeneity. It is a glycoprotein of about 172,000 molecular weight. Analyses of the subunit structure by sedimentation equilibrium in 6 M guanidine hydrochloride and by gel electrophoresis in sodium dodecyl sulfate indicate that the alkaline phosphatase is a dimer comprising two very similar or identical subunits of about 87,000 molecular weight. The native enzyme contains 4.5 +/- 0.2 g atoms of zinc per mol of protein. Reconstitution experiments from the apophosphatase show that binding of 4 Zn2+ per mol of dimer is essential for full activity. The kinetic data of Zn2+ binding to the apoprotein require at least a two-step mechanism, in which one of the steps corresponds to a conformational change within the enzyme. This paper also presents data concerning amino acid composition, sugar content, enzyme stability, absorbance index, and sedimentation velocity.  相似文献   

15.
Proteolysis of pigeon liver fatty acid synthetase with elastase results in the quantitative cleavage of the thioesterase component from the enzyme complex. This thioesterase component is two or three times more active catalytically in the isolated state than in the native fatty acid synthetase, and its activity is not affected by the presence or absence of reducing thiols. The proteolytically cleaved thioesterase is separated from the core enzyme in one step by size-exclusion chromatography on a Sephadex G-75 column. The peptide obtained by gel permeation is homogeneous with respect to size and charge, as shown by polyacrylamide gel electrophoresis in the presence and absence of SDS. Size-exclusion chromatography on Bio-Gel A 0.5 m and Sephadex G-75 columns, sucrose density gradient ultracentrifugation, and N-terminal amino acid analysis also indicate that the proteolytically cleaved thioesterase is homogeneous. The sedimentation coefficient of the thioesterase is approximately 2.9 S. Proteolytic cleavage with elastase also quantitatively releases the [1,3-14C]- or [1,3-3H]diisopropylphosphofluoridate-labeled thioesterase component from the correspondingly labeled fatty acid synthetase. Binding studies with 14C- or 3H-labelled diisopropylphosphofluoridate and fatty acid synthetase show that 2 mol of the label are bound per mol of the enzyme when complete loss of fatty acid-synthesizing activity occurs. The molecular weight of the thioesterase component is estimated to be 36000 by size-exclusion chromatography, SDS-polyacrylamide gel electrophoresis and amino acid analysis.  相似文献   

16.
M Marie  J V Moller  C Tanford 《Biochemistry》1976,15(11):2336-2342
The Ca2+ -activated ATPase of sarcoplasmic reticulum can exist in true solution in the presence of some nonionic detergents, with retention of enzymatic activity for several days. The soluble active particles retain about 30 mol of phospholipid per mol of polypeptide chain even in the presence of a large excess of detergent, indicating the existence of relatively strong attractive forces between protein and lipid, as previous work from other laboratories has already suggested. Deoxycholate is much more effective than nonionic detergents in removing protein-bound lipid and, when used at solubilizing concentrations, completely delipidates and inactivates the ATPase. Preliminary molecular weight measurements indicate that the Ca2+ -ATPase exists as an oligomer in the native membrane: fully active enzyme in Tween 80 has a minimal protein molecular weight of about 400 000, corresponding to a trimer or tetramer of the ATPase polypeptide chain, and even the inactive enzyme in deoxycholate contains a substantial fraction of dimeric protein.  相似文献   

17.
Glutaryl-CoA dehydrogenase, a multifunctional enzyme responsible for dehydrogenation and decarboxylation of glutaryl-CoA to crotonyl-CoA, has been purified 1,680-fold from porcine liver mitochondria. The purified porcine enzyme has a subunit molecular weight of 47,800 and a native molecular weight of 190,500. Porcine glutaryl-CoA dehydrogenase catalyzed the conversion of [1,5-14C]glutaryl-CoA to [14C] crotonyl-CoA and 14CO2 in a 1:1:1 ratio. The porcine enzyme has Km values for electron transfer flavoprotein and glutaryl-CoA of 1.1 and 3.3 microM, respectively, and turnover numbers of 860 mol of electron transfer flavoprotein/min/mol of glutaryl-CoA dehydrogenase and 327 mol of glutaryl-CoA/min/mol of glutaryl-CoA dehydrogenase. Human glutaryl-CoA dehydrogenase has been purified 1,278-fold from human liver mitochondria. The purified human enzyme has a subunit molecular weight of 58,800 and a native molecular weight of 256,000. Human glutaryl-CoA dehydrogenase showed a reaction of only partial identity when compared to porcine glutaryl-CoA dehydrogenase by Ouchterlony double immunodiffusion analysis using antiserum raised against and monospecific for porcine glutaryl-CoA dehydrogenase.  相似文献   

18.
A constitutively expressed aliphatic amidase from a Rhodococcus sp. catalyzing acrylamide deamination was purified to electrophoretic homogeneity. The molecular weight of the native enzyme was estimated to be 360,000. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified preparation yielded a homogeneous protein band having an apparent molecular weight of about 44,500. The amidase had pH and temperature optima of 8.5 and 40 degrees C, respectively, and its isoelectric point was pH 4.0. The amidase had apparent K(m) values of 1.2, 2.6, 3.0, 2.7, and 5.0 mM for acrylamide, acetamide, butyramide, propionamide, and isobutyramide, respectively. Inductively coupled plasma-atomic emission spectometry analysis indicated that the enzyme contains 8 mol of iron per mol of the native enzyme. No labile sulfide was detected. The amidase activity was enhanced by, but not dependent on Fe(2+), Ba(2+), and Cr(2+). However, the enzyme activity was partially inhibited by Mg(2+) and totally inhibited in the presence of Ni(2+), Hg(2+), Cu(2+), Co(2+), specific iron chelators, and thiol blocking reagents. The NH2-terminal sequence of the first 18 amino acids displayed 88% homology to the aliphatic amidase of Brevibacterium sp. strain R312.  相似文献   

19.
gamma-Glutamylcysteine synthetase was purified from rat liver by an improved method involving chromatography on Sepharose-aminohexyl-ATP to a specific activity of about 1600 units/mg, or approximately twice that previously obtained; it is thus the most active preparation of this enzyme thus far isolated. The earlier preparation, which is homogeneous on polyacrylamide gel electrophoresis, exhibits "half of the sites" reactivity in that it binds a maximum of 0.5 mol of the inhibitor L-methionine-S-sulfoximine phosphate per mol of enzyme. In contrast, the present enzyme preparation binds 1 mol of methionine sulfoximine phosphate per mol of enzyme; it also differs from the enzyme obtained earlier in exhibiting much less ATPase activity and less activity in catalyzing ATP-dependent cyclization of glutamate. gamma-Glutamylcysteine synthetase dissociates in sodium dodecyl sulfate into two nonidentical subunits of apparent molecular weights 74,000 and 24,000; after cross-linking with dimethyl-suberimidate, a species having a molecular weight of about 100,000 was found on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. New information has been obtained about the interaction of the enzyme with glutamate analogs; thus, the enzyme is active with such glutamate analogs as beta-glutamate, N-methyl-L-glutamate, and threo-beta-hydroxy-L-glutanate, and it is effectively inhibited by cis-1-amino-1,3-dicarboxycyclonexane, 2-amino-4-phosphonobutyrate, and gamma-methylglutamate.  相似文献   

20.
S I Taylor 《Biochemistry》1975,14(11):2357-2361
Binding of 1251-labeled hormones to receptors can usually be inhibited by addition of unlabeled hormone. In analyzing such binding-inhibition data, it is commonly assumed that both labeled and unlabeled hormones are bound with equal affinity. When this assumption is made incorrectly, an artifactually nonlinear Scatchard plot results. Equations to describe these nonlinear Scatchard plots are derived. These results are discussed with regard to previously published observations of nonlinear Scatchard plots for binding of insulin to its receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号