共查询到20条相似文献,搜索用时 0 毫秒
1.
Payne NL Gillanders BM Seymour RS Webber DM Snelling EP Semmens JM 《The Journal of animal ecology》2011,80(2):422-430
1. Estimating the metabolic rate of animals in nature is central to understanding the physiological, behavioural and evolutionary ecology of animals. Doubly labelled water and heart-rate methods are the most commonly used approaches, but both have limitations that preclude their application to some systems. 2. Accelerometry has emerged as a powerful tool for estimating energy expenditure in a range of animals, but is yet to be used to estimate field metabolic rate in aquatic taxa. We combined two-dimensional accelerometry and swim-tunnel respirometry to estimate patterns of energy expenditure in giant Australian cuttlefish Sepia apama during breeding. 3. Both oxygen consumption rate (Vo2) and swimming speed showed strong positive associations with body acceleration, with coefficients of determination comparable to those using similar accelerometers on terrestrial vertebrates. Despite increased activity during the day, field metabolic rate rarely approached Vo2, and night-time Vo2 was similar to that at rest. 4. These results are consistent with the life-history strategy of this species, which has a poor capacity to exercise anaerobically, and a mating strategy that is visually based. With the logistical difficulties associated with observation in aquatic environments, accelerometry is likely to prove a valuable tool for estimating energy expenditure in aquatic animals. 相似文献
2.
Karina C. Hall Anthony J. Fowler Michael C. Geddes 《Reviews in Fish Biology and Fisheries》2007,17(2-3):367-384
Giant Australian cuttlefish form a mass spawning aggregation at a single site in northern Spencer Gulf (NSG) in South Australia every austral winter. Samples of cuttlefish were collected from this region over three consecutive years. Analysis of regular growth increments in the cuttlebones of these individuals, revealed a polymorphism in growth pattern for both sexes. Three distinct “bone patterns” were identified based on the variation in increment widths over the lengths of the bones. All bones analysed conformed to one of the three bone patterns, and the increment width patterns were consistent between years. Interpretation of the patterns, suggested that Sepia apama have two alternative life cycles. The first involves rapid juvenile growth during the first summer after hatching, with maturity reached within 7–8 months. These individuals return to spawn in their first year as small individuals. The second life cycle involves much slower juvenile growth during the first summer, with maturity deferred until their second year, when they return to spawn as much larger individuals. Thus, the age compositions of populations of S. apama in the NSG appear to consist of two year classes for both sexes. 相似文献
3.
LEANNE WHEATON STEPHEN C. DONNELLAN MELITA C. DE VRIES MICHAEL G. GARDNER BRONWYN M. GILLANDERS 《Molecular ecology resources》2007,7(5):893-895
We isolated 10 polymorphic microsatellite loci for the giant Australian cuttlefish, Sepia apama, from a genomic library enriched for (AAC)n and (AAAG)n repetitive elements. In the nine loci that reliably amplified, the number of alleles ranged from four to 12 per locus with observed heterozygosity ranging from 0.343 to 0.926. These and a previously developed set of six loci will be useful for analysis of genetic structure of populations and determining input to a massive seasonal breeding aggregation in northern Spencer Gulf, Australia. 相似文献
4.
5.
It might seem obvious that a camouflaged animal must generally match its background whereas to be conspicuous an organism must differ from the background. However, the image parameters (or statistics) that evaluate the conspicuousness of patterns and textures are seldom well defined, and animal coloration patterns are rarely compared quantitatively with their respective backgrounds. Here we examine this issue in the Australian giant cuttlefish Sepia apama. We confine our analysis to the best-known and simplest image statistic, the correlation in intensity between neighboring pixels. Sepia apama can rapidly change their body patterns from assumed conspicuous signaling to assumed camouflage, thus providing an excellent and unique opportunity to investigate how such patterns differ in a single visual habitat. We describe the intensity variance and spatial frequency power spectra of these differing body patterns and compare these patterns with the backgrounds against which they are viewed. The measured image statistics of camouflaged animals closely resemble their backgrounds, while signaling animals differ significantly from their backgrounds. Our findings may provide the basis for a set of general rules for crypsis and signals. Furthermore, our methods may be widely applicable to the quantitative study of animal coloration. 相似文献
6.
H. Battam M. Richardson A. W. T. Watson W. A. Buttemer 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2010,180(8):1247-1255
The cuttlefish Sepia apama Gray (Mollusca: Cephalopoda) is a seasonally abundant food resource exploited annually by moulting albatrosses throughout
winter and early spring in the coastal waters of New South Wales, Australia. To assess its nutritional value as albatross
forage, we analysed S. apama for water, lipid protein, ash contents, energy density and amino acid composition. Because albatrosses consistently consume
S. apama parts preferentially in the order of head, viscera and mantle, we analysed these sections separately, but did not identify
any nutritional basis for this selective feeding behaviour. The gross energy value of S. apama bodies was 20.9 kJ/g dry mass, but their high water content (>83%; cf <70% for fish) results in a relatively low energy density
of 3.53 kJ/g. This may contribute to a need to take large meals, which subsequently degrade flight performance. Protein content
was typically >75% dry mass, whereas fat content was only about 1%. Albatrosses feed on many species of cephalopods and teleost
fish, and we found the amino acid composition of S. apama to be comparable to a range of species within these taxa. We used S. apama exclusively in feeding trials to estimate the energy assimilation efficiency for Diomedea albatrosses. We estimated their nitrogen-corrected apparent energy assimilation efficiency for consuming this prey to be
81.82 ± 0.72% and nitrogen retention as 2.90 ± 0.11 g N kg−1 d−1. Although S. apama has a high water content and relatively low energy density, its protein composition is otherwise comparable to other albatross
prey species. Consequently, the large size and seasonal abundance of this prey should ensure that albatrosses remain replete
and adequately nourished on this forage while undergoing moult. 相似文献
7.
Swimming dynamics of the giant Australian cuttlefish, Sepia apama, were investigated using swimtunnel respirometry. Relationships between jet pressure, fin frequency, swimming speed and oxygen consumption were defined. Laboratory calibration of swimming parameters is necessary to allow estimates of swimming costs in the field.
Jet pressure was the best predictor of oxygen consumption with an averaged equation of MO2 = 722 (jet pressure) + 107 r2 = 0.51. Individually, fin frequency and jet pressure correlated highly to swimming speed, but due to the complicated usage of finning and jetting, the correlation between swimming speed and oxygen consumption was weaker. Cuttlefish were not optimal swimtunnel subjects and could not swim at high speeds for extended periods. At 15°C and a swimming speed of 0.06 m s-1, the gross cost of transport was calculated to be 10.1 kg-1 m -1, with a net cost of 4.1 kg-1 m-1. 相似文献
Jet pressure was the best predictor of oxygen consumption with an averaged equation of MO2 = 722 (jet pressure) + 107 r2 = 0.51. Individually, fin frequency and jet pressure correlated highly to swimming speed, but due to the complicated usage of finning and jetting, the correlation between swimming speed and oxygen consumption was weaker. Cuttlefish were not optimal swimtunnel subjects and could not swim at high speeds for extended periods. At 15°C and a swimming speed of 0.06 m s-1, the gross cost of transport was calculated to be 10.1 kg-1 m -1, with a net cost of 4.1 kg-1 m-1. 相似文献
8.
We report a methodology refined over 20 years to culture and maintain a small colony of Sepia officinalis for research year-round. Wild-caught eggs were obtained annually from England and reared in semi-closed natural seawater systems of large volume. Constant temperature (15 °C) and day length (12L/12D) delayed sexual maturation and reproductive behavior. This extended life cycle by roughly 50%, thus providing small research animals for about 18 months from every annual batch of eggs. A novel live food – gammarid crustaceans collected from washed up seagrass– was provided to hatchlings and juveniles. Juveniles were then trained to take thawed shrimp thereafter, thus reducing the expense of live foods. Typical survival to one year was >65%. With these methods, healthy sexually immature cuttlefish were available year-round for behavioral and physiological studies without the confounding influences of hormonally-induced fighting, mating, and egg laying that typically occur within six months. 相似文献
9.
Zylinski S Darmaillacq AS Shashar N 《Proceedings. Biological sciences / The Royal Society》2012,279(1737):2386-2390
Cuttlefish rapidly change their appearance in order to camouflage on a given background in response to visual parameters, giving us access to their visual perception. Recently, it was shown that isolated edge information is sufficient to elicit a body pattern very similar to that used when a whole object is present. Here, we examined contour completion in cuttlefish by assaying body pattern responses to artificial backgrounds of 'objects' formed from fragmented circles, these same fragments rotated on their axis, and with the fragments scattered over the background, as well as positive (full circles) and negative (homogenous background) controls. The animals displayed similar responses to the full and fragmented circles, but used a different body pattern in response to the rotated and scattered fragments. This suggests that they completed the broken circles and recognized them as whole objects, whereas rotated and scattered fragments were instead interpreted as small, individual objects in their own right. We discuss our findings in the context of achieving accurate camouflage in the benthic shallow-water environment. 相似文献
10.
11.
Changes in egg volume, water content, proteins, carbohydrates, lipids, amino acids and fatty acids in cuttlefish (Sepia esculenta) were determined during embryogenesis to understand the nutritional requirements in the early life phase. The egg volume and the water content decreased significantly (P<0.05) during early embryonic development, and then increased abruptly after the beginning of organ differentiation. During embryonic development, protein was the major content in the yolk and the per cent composition varied to a large extent (55.19–78.45%) with carbohydrates (9.86–15.56%) and lipids (1.62–2.97%). Proteins and lipids decreased 23.3% and 0.4%, respectively, in dry weight, while carbohydrates increased 0.46%. Total amino acids and essential amino acids (EAAs) were stable during the early embryonic developmental stage, but decreased significantly until the eggs hatched (P<0.05). The largest utilisation of the yolk protein possibly occurred with respect to EAAs (25.7%) because of a decrease in methionine (70.3%), valine (63.0%) and phenylalanine (58.5%). The most important fatty acids were saturated fatty acid (SFA) C16:0 and polyunsaturated fatty acids (PUFAs) C22:6 and C20:5. Unsaturated fatty acids (UFAs) and SFA decreased at a similar rate during embryonic development (5.69% and 6.15%, respectively). For UFAs, monounsaturated fatty acids were consumed at a greater rate than PUFAs (29.6% and 0.05%, respectively). 相似文献
12.
Jedediah Tressler Francis Maddox Eli Goodwin Zhuobin Zhang Nathan J. Tublitz 《Invertebrate neuroscience : IN》2014,14(1):37-49
To provide quantitative information on arm regeneration in cuttlefish, the regenerating arms of two cuttlefish species, Sepia officinalis and Sepia pharaonis, were observed at regular intervals after surgical amputation. The third right arm of each individual was amputated to ~10–20 % starting length. Arm length, suction cup number, presence of chromatophores, and behavioral measures were collected every 2–3 days over a 39-day period and compared to the contralateral control arm. By day 39, the regenerating arm reached a mean 95.5 ± 0.3 % of the control for S. officinalis and 94.9 ± 1.3 % for S. pharaonis. The process of regeneration was divided into five separate stages based on macroscopic morphological events: Stage I (days 0–3 was marked by a frayed leading edge; Stage II (days 4–15) by a smooth hemispherical leading edge; Stage III (days 16–20) by the appearance of a growth bud; Stage IV (days 21–24) by the emergence of an elongated tip; and Stage V (days 25–39) by a tapering of the elongated tip matching the other intact arms. Behavioral deficiencies in swimming, body postures during social communication, and food manipulation were observed immediately after arm amputation and throughout Stages I and II, returning to normal by Stage III. New chromatophores and suction cups in the regenerating arm were observed as early as Stage II and by Stage IV suction cup number equaled that of control arms. New chromatophores were used in the generation of complex body patterns by Stage V. These results show that both species of cuttlefish are capable of fully regenerating lost arms, that the regeneration process is predictable and consistent within and across species, and provide the first quantified data on the rate of arm lengthening and suction cup addition during regeneration. 相似文献
13.
Spogmai Komak Jean G. Boal Ludovic Dickel Bernd U. Budelmann 《Marine and Freshwater Behaviour and Physiology》2005,38(2):117-125
Physiological studies have shown that the epidermal head and arm lines in cephalopods are a mechanoreceptive system that is similar to the fish and amphibian lateral lines (Budelmann BU, Bleckmann H. 1988. A lateral line analogue in cephalopods: Water waves generate microphonic potentials in the epidermal head lines of Sepia officinalis and Lolliguncula brevis. J. Comp. Physiol. A 164:1-5.); however, the biological significance of the epidermal lines remains unclear. To test whether cuttlefish show behavioural responses to local water movements, juvenile Sepia officinalis were exposed to local sinusoidal water movements of different frequencies (0.01-1000 Hz) produced by a vibrating sphere. Five behavioural responses were recorded: body pattern changing, moving, burrowing, orienting, and swimming. Cuttlefish responded to a wide range of frequencies (20-600 Hz), but not to all of the frequencies tested within that range. No habituation to repeated stimuli was seen. Results indicate that cuttlefish can detect local water movements (most likely with the epidermal head and arm lines) and are able to integrate that information into behavioural responses. 相似文献
14.
Sperm displacement behavior of the cuttlefish Sepia esculenta (Cephalopoda: Sepiidae) 总被引:2,自引:0,他引:2
Sperm displacement behavior of cuttlefish (Sepia esculenta) was observed in a tank. Before ejaculation, male cuttlefish used their arms III to scrape out sperm masses attached to the buccal membranes of females. The removed sperm mass debris was directly visible and countable. Active sperm were present within the removed sperm debris, implying that the aim of this behavior is to remove competing male sperm. However, many sperm masses remained on the female buccal membrane even after the removal behavior, showing that sperm removal in S. esculenta is incomplete. The duration of sperm removal (an indicator of male investment in that process) was unaffected by the body sizes of mated pair, the duration of spermatangia placement at the current mating (for the hypothesis that the sperm removal serves to creat attachment space of spermatophores), or the estimated amount of sperm masses deposited from previous matings. Moreover, male S. esculenta performed sperm removal regardless of whether the last male to mate with the partner was himself, suggesting males remove not only the sperm of rivals but also their own. Although the number of removed sperm masses increased with the time spent on removal of sperm, male cuttlefish may shorten the duration of sperm removal to avoid the risk of mating interruption. We conclude that this time restriction would likely influence the degree of partial sperm removal in S. esculenta. A digital video image relating to the article is available at .This revised version was published online in April 2005 with corrections in the abstract. 相似文献
15.
16.
Nunes MA Santos S Cordeiro JM Neves P Silva VS Sykes A Morgado F Dunant Y Gonçalves PP 《The Biological bulletin》2008,214(1):1-5
Acetylcholine (ACh), which is synthesized from choline (Ch), is believed to hold a central place in signaling mechanisms within the central nervous system (CNS) of cuttlefish (Sepia officinalis) and other coleoid cephalopods. Although the main elements required for cholinergic function have been identified in cephalopods, the transmembrane translocation events promoting the release of ACh and the uptake of Ch remain largely unsolved. The ACh release and Ch uptake were quantitatively studied through the use of in vitro chemiluminescence and isotopic methods on a subcellular fraction enriched in synaptic nerve endings (synaptosomes) isolated from cuttlefish optic lobe. The ACh release evoked by K+ depolarization was found to be very high (0.04 pmol ACh.s(-1).mg(-1) protein). In response to stimulation by veratridine, a secretagogue (a substance that induces secretion) that targets voltage-gated Na+ channels, the release rate and the total amount of ACh released were significantly lower, by 10-fold, than the response induced by KCl. The high-affinity uptake of choline was also very high (31 pmol Ch.min(-1).mg(-1) protein). The observed ACh release and Ch uptake patterns are in good agreement with published data on preparations characterized by high levels of ACh metabolism, adding further evidence that ACh acts as a neurotransmitter in cuttlefish optic lobe. 相似文献
17.
Among Trinidadian guppies Poecilia reticulata , 15% of non-receptive females had recoverable sperm that must have come from successful sneaky matings. These results provide the first evidence that sneaky mating is a successful method of sperm transfer in wild populations of the guppy. 相似文献
18.
Isolation and characterization of microsatellite DNA loci from the golden cuttlefish,Sepia esculenta Hoyle (Cephalopoda) 总被引:1,自引:0,他引:1
XIAODONG ZHENG MINORU IKEDA ANNA BARINOVA NOBUHIKO TANIGUCHI 《Molecular ecology resources》2007,7(1):40-42
The first microsatellite markers were isolated from the golden cuttlefish, Sepia esculenta Hoyle. Eleven primer sets were designed to amplify the marker sequences via polymerase chain reaction. The 45–50 individuals from one wild population in the coastal waters of Ehime Prefecture, Japan were used to screen polymorphism in the 11 microsatellite loci. All the microsatellite loci were polymorphic, with the range of alleles from seven to 27 per locus. The observed and expected heterozygosities ranged from 0.380 to 0.980 and from 0.654 to 0.940, respectively. These marker loci except for one locus showing significant deviation from Hardy–Weinberg equilibrium will be useful for the assessment of genetic variation and population structure of this species. 相似文献
19.
Sleep has been observed in several invertebrate species, but its presence in marine invertebrates is relatively unexplored. Rapid-eye-movement (REM) sleep has only been observed in vertebrates. We investigated whether the cuttlefish Sepia officinalis displays sleep-like states. We find that cuttlefish exhibit frequent quiescent periods that are homeostatically regulated, satisfying two criteria for sleep. In addition, cuttlefish transiently display a quiescent state with rapid eye movements, changes in body coloration and twitching of the arms, that is possibly analogous to REM sleep. Our findings thus suggest that at least two different sleep-like states may exist in Sepia officinalis. 相似文献
20.
Derya Akkaynak Justine J. Allen Lydia M. Mäthger Chuan-Chin Chiao Roger T. Hanlon 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2013,199(3):211-225
Cephalopods are renowned for their ability to adaptively camouflage on diverse backgrounds. Sepia officinalis camouflage body patterns have been characterized spectrally in the laboratory but not in the field due to the challenges of dynamic natural light fields and the difficulty of using spectrophotometric instruments underwater. To assess cuttlefish color match in their natural habitats, we studied the spectral properties of S. officinalis and their backgrounds on the Aegean coast of Turkey using point-by-point in situ spectrometry. Fifteen spectrometry datasets were collected from seven cuttlefish; radiance spectra from animal body components and surrounding substrates were measured at depths shallower than 5 m. We quantified luminance and color contrast of cuttlefish components and background substrates in the eyes of hypothetical di- and trichromatic fish predators. Additionally, we converted radiance spectra to sRGB color space to simulate their in situ appearance to a human observer. Within the range of natural colors at our study site, cuttlefish closely matched the substrate spectra in a variety of body patterns. Theoretical calculations showed that this effect might be more pronounced at greater depths. We also showed that a non-biological method (“Spectral Angle Mapper”), commonly used for spectral shape similarity assessment in the field of remote sensing, shows moderate correlation to biological measures of color contrast. This performance is comparable to that of a traditional measure of spectral shape similarity, hue and chroma. This study is among the first to quantify color matching of camouflaged cuttlefish in the wild. 相似文献