首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeted deletion of the surfactant protein (SP)-B locus in mice causes lethal neonatal respiratory distress. To assess the importance of SP-B for postnatal lung function, compound transgenic mice were generated in which the mouse SP-B cDNA was conditionally expressed under control of exogenous doxycycline in SP-B-/- mice. Doxycycline-regulated expression of SP-B fully corrected lung function in compound SP-B-/- mice and protected mice from respiratory failure at birth. Withdrawal of doxycycline from adult compound SP-B-/- mice resulted in decreased alveolar content of SP-B, causing respiratory failure when SP-B concentration was reduced to <25% of normal levels. Decreased SP-B was associated with low alveolar content of phosphatidylglycerol, accumulation of misprocessed SP-C proprotein in the air spaces, increased protein content in bronchoalveolar lavage fluid, and altered surfactant activity in vitro. Consistent with surfactant dysfunction, hysteresis, maximal tidal volumes, and end expiratory volumes were decreased. Reduction of alveolar SP-B content causes surfactant dysfunction and respiratory failure, indicating that SP-B is required for postnatal lung function.  相似文献   

2.
3.
Pneumonitis and emphysema in sp-C gene targeted mice   总被引:19,自引:0,他引:19  
SP-C-deficient (SP-C -/-) mice developed a severe pulmonary disorder associated with emphysema, monocytic infiltrates, epithelial cell dysplasia, and atypical accumulations of intracellular lipids in type II epithelial cells and alveolar macrophages. Whereas alveolar and tissue surfactant phospholipid pools were increased, levels of other surfactant proteins were not altered (SP-B) or were modestly increased (SP-A and SP-D). Analysis of pressure-volume curves and forced oscillatory dynamics demonstrated abnormal respiratory mechanics typical of emphysema. Lung disease was progressive, causing weight loss and cardiomegaly. Extensive alveolar remodeling was accompanied by type II cell hyperplasia, obliteration of pulmonary capillaries, and widespread expression of alpha-smooth muscle actin, indicating myofibroblast transformation in the lung parenchyma. Dysplastic epithelial cells lining conducting airways stained intensely for the mucin, MUC5A/C. Tissue concentrations of proinflammatory cytokines were not substantially altered in the SP-C (-/-) mice. Production of matrix metalloproteinases (MMP-2 and MMP-9) was increased in alveolar macrophages from SP-C (-/-) mice. Absence of SP-C caused a severe progressive pulmonary disorder with histologic features consistent with interstitial pneumonitis.  相似文献   

4.
The effect of surface tension on alveolar macrophage shape and phagocytosis was assessed in vivo and in vitro. Surface tension was regulated in vivo by conditionally expressing surfactant protein (SP)-B in Sftpb-/- mice. Increased surface tension and respiratory distress were produced by depletion of SP-B and were readily reversed by repletion of SP-B in vivo. Electron microscopy was used to demonstrate that alveolar macrophages were usually located beneath the surfactant film on the alveolar surfaces. Reduction of SP-B increased surface tension and resulted in flattening of alveolar macrophages on epithelial surfaces in vivo. Phagocytosis of intratracheally injected fluorescent microbeads by alveolar macrophages was decreased during SP-B deficiency and was restored by repletion of SP-B in vivo. Incubation of MH-S cells, a mouse macrophage cell line, with inactive surfactant caused cell flattening and decreased phagocytosis in vitro, findings that were reversed by the addition of sheep surfactant or phospholipid containing SP-B. SP-B controls surface tension by forming a surfactant phospholipid film that regulates shape and nonspecific phagocytic activity of alveolar macrophages on the alveolar surface.  相似文献   

5.
6.
Surfactant in respiratory distress syndrome and lung injury   总被引:6,自引:0,他引:6  
A deficiency in alveolar surfactant due to immaturity of alveolar type II epithelial cells causes respiratory distress syndrome (RDS). In contrast to animals, the fetal maturation of surfactant in human lungs takes place before term, exceptionally large quantities of surfactant accumulating in the amniotic fluid. The antenatal development of surfactant secretion is very variable but corresponds closely to the risk of RDS. The variation in SP-A and SP-B genes, race, sex and perinatal complications influence susceptibility to RDS. Surfactant therapy has improved the prognosis of RDS remarkably. Abnormalities in alveolar or airway surfactant characterize many lung and airway diseases. In the acute respiratory distress syndrome, deficiencies in surfactant components (phospholipids, SP-B, SP-A) are evident, and may be caused by pro-inflammatory cytokines (IL-1, TNF) that decrease surfactant components. The resultant atelectasis localizes the disease, possibly allowing healing (regeneration, increase in surfactant). In the immature fetus, cytokines accelerate the differentiation of surfactant, preventing RDS. After birth, however, persistent inflammation is associated with low SP-A and chronic lung disease. A future challenge is to understand how to inhibit or redirect the inflammatory response from tissue destruction and poor growth towards normal lung development and regeneration.  相似文献   

7.
8.
Surfactant protein D (SP-D) gene-targeted mice develop severe pulmonary disease associated with emphysema, pulmonary lipidosis, and foamy macrophage infiltrations. To determine the potential reversibility of these abnormalities, transgenic mice were developed in which SP-D was conditionally replaced in the respiratory epithelium of SP-D(-/-) mice. SP-D was not detected in the absence of doxycycline. Treatment with doxycycline after birth restored pulmonary SP-D concentrations and corrected pulmonary pathology at adulthood. When SP-D was replaced in adult SP-D(-/-) mice, alveolar SP-D was restored within 3 days, pulmonary lipid abnormalities were corrected, but emphysema persisted. In corrected adult SP-D(-/-) mice, loss of SP-D caused focal emphysema and pulmonary inflammation but did not cause phospholipid abnormalities characteristic of SP-D(-/-) mice. Thus, abnormalities in surfactant phospholipid homeostasis and alveolar macrophage abnormalities were readily corrected by restoration of SP-D. However, once established, emphysema was not reversed by SP-D. SP-D-dependent processes regulating surfactant lipid homeostasis were disassociated from those mediating emphysema.  相似文献   

9.
Although the surface properties of surfactant protein (SP)-B and SP-C are similar, the contributions that either protein may make to lung function have not been identified in vivo. Mutations in SP-B cause lethal respiratory failure at birth; however, SP-B null mice are deficient in both SP-B and SP-C. To identify potential contributions of SP-C to lung function in vivo, the following transgenic mice were generated and exposed to 95% O(2) for 3 days: (SP-B(+/+),SP-C(+/+)), (SP-B(+/+), SP-C(-/-)), (SP-B(+/-),SP-C(+/+)), (SP-B(+/-),SP-C(+/-)), and (SP-B(+/-),SP-C(-/-)). Hyperoxia altered pressure-volume curves in mice that were heterozygous for SP-B, and these values were further decreased in (SP-B(+/-),SP-C(-/-)) mice. Likewise, alveolar interleukin (IL)-6 and IL-1 beta were maximally increased by O(2) exposure of (SP-B(+/-),SP-C(-/-)) mice compared with the other genotypes. Lung hysteresivity was lower in the (SP-B(+/-),SP-C(-/-)) mice. Surfactant isolated from (SP-B(+/+),SP-C(-/-)) and (SP-B(+/-),SP-C(-/-)) mice failed to stabilize the surface tension of microbubbles, showing that SP-C plays a role in stabilization or recruitment of phospholipid films at low bubble radius. Genetically decreased levels of SP-B combined with superimposed O(2)-induced injury reveals the distinct contribution of SP-C to pulmonary function in vivo.  相似文献   

10.
Surfactant protein B (SP-B) is required for function of newborn and adult lung, and partial deficiency has been associated with susceptibility to lung injury. In the present study, transgenic mice were produced in which expression of SP-B in type II epithelial cells was conditionally regulated. Concentrations of SP-B were maintained at 60-70% of that normally present in control. Immunostaining for SP-B demonstrated cellular heterogeneity in expression of the protein. In subsets of type II cells in which SP-B staining was decreased, immunostaining for pro-SP-C was increased and lamellar body ultrastructure was disrupted, consistent with focal SP-B deficiency. Fluorescence-activated cell sorting analyses of freshly isolated type II cells identified a population of cells with low SP-B content and a smaller population with increased SP-B content, confirming nonuniform expression of the SP-B transgene. Focal air space enlargement, without cellular infiltration or inflammation, was observed. Pressure-volume curves indicated that maximal tidal volume was unchanged; however, hysteresis was modestly altered and residual volumes were significantly decreased in the SP-B-deficient mice. Chronic, nonuniform SP-B deficiency perturbed pulmonary function and caused air space enlargement.  相似文献   

11.
We have shown that febrile-range hyperthermia enhances lung injury and mortality in mice exposed to inhaled LPS and is associated with increased TNF-α receptor activity, suppression of NF-κB activity in vitro, and increased apoptosis of alveolar epithelial cells in vivo. We hypothesized that hyperthermia enhances lung injury and mortality in vivo by a mechanism dependent on TNF receptor signaling. To test this, we exposed mice lacking the TNF-receptor family members TNFR1/R2 or Fas (TNFR1/R2(-/-) and lpr) to inhaled LPS with or without febrile-range hyperthermia. For comparison, we studied mice lacking IL-1 receptor activity (IL-1R(-/-)) to determine the role of inflammation on the effect of hyperthermia in vivo. TNFR1/R2(-/-) and lpr mice were protected from augmented alveolar permeability and mortality associated with hyperthermia, whereas IL-1R(-/-) mice were susceptible to augmented alveolar permeability but protected from mortality associated with hyperthermia. Hyperthermia decreased pulmonary concentrations of TNF-α and keratinocyte-derived chemokine after LPS in C57BL/6 mice and did not affect pulmonary inflammation but enhanced circulating markers of oxidative injury and nitric oxide metabolites. The data suggest that hyperthermia enhances lung injury by a mechanism that requires death receptor activity and is not directly associated with changes in inflammation mediated by hyperthermia. In addition, hyperthermia appears to enhance mortality by generating a systemic inflammatory response and not by a mechanism directly associated with respiratory failure. Finally, we observed that exposure to febrile-range hyperthermia converts a modest, survivable model of lung injury into a fatal syndrome associated with oxidative and nitrosative stress, similar to the systemic inflammatory response syndrome.  相似文献   

12.
The adenoviral E3-14.7K protein is a cytoplasmic protein synthesized after adenoviral infection. To assess the contribution of E3-14. 7K-sensitive pathways in the modulation of inflammation by the respiratory epithelium, inflammatory responses to intratracheal lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-alpha were assessed in transgenic mice bearing the adenoviral E3-14.7K gene under the direction of the surfactant protein (SP) C promoter. When E3-14.7K transgenic mice were administered LPS intratracheally, lung inflammation as indicated by macrophage and neutrophil accumulation in bronchoalveolar lavage fluid was decreased compared with wild-type control mice. Lung inflammation and epithelial cell injury were decreased in E3-14.7K mice 24 and 48 h after LPS administration. Intracellular staining for surfactant proprotein (proSP) B, proSP-C, and SP-B was decreased and extracellular staining was markedly increased in wild-type mice after LPS administration, consistent with LPS-induced lung injury. In contrast, intense intracellular staining of proSP-B, proSP-C, and SP-B persisted in type II cells of E3-14.7K mice, whereas extracellular staining of proSP-B and proSP-C was absent. Inhibitory effects of intratracheal LPS on SP-C mRNA were ameliorated by expression of the E3-14.7K gene. Similar to the response to LPS, lung inflammation after intratracheal administration of TNF-alpha was decreased in E3-14.7K transgenic mice. Levels of TNF-alpha after LPS administration were similar in wild-type and E3-14.7K-bearing mice. Cell-selective expression of E3-14.7K in the respiratory epithelium inhibited LPS- and TNF-alpha-mediated lung inflammation, demonstrating the critical role of respiratory epithelial cells in LPS- and TNF-alpha-induced lung inflammation.  相似文献   

13.
Surfactant protein B (SP-B) is known to promote surfactant phospholipid film formation and reduce surface tension. Native SP-B is a homodimer in which subunit association is stabilized via covalent linkage through cysteine 48. We hypothesized that loss of the intersubunit bridge would alter SP-B function and lead to increased inflammation in response to challenge by hyperoxia or endotoxin. Transgenic mice in which SP-B cysteine 48 was mutated to serine were generated and crossed into the SP-B(-/-) background. Wild-type mice and transgenic mice carrying a single copy (SP-Bmon(+)) or two copies (SP-Bmon(++)) of the transgene were exposed to 95% O2 for 3 days or intratracheally injected with 10 microg of endotoxin. Interleukin-1beta, major intrinsic protein 2, and interleukin-6 in lung homogenates after 3 days of hyperoxia were significantly higher (P < 0.001) in SP-Bmon(+) mice than SP-Bmon(++) or wild-type mice. At 16 h after endotoxin injection, cytokines in lung tissues were higher in SP-Bmon(+) mice compared with wild-type mice (P < 0.05). Consistent with prolonged recovery in SP-Bmon(+) mice, the percentage of apoptotic cells in alveolar lavage was significantly lower in SP-Bmon(+) mice than in SP-Bmon(++) and wild-type mice. Overall, increased inflammation in SP-Bmon(+) mice was corrected to a large extent by increased gene dosage, indicating that formation of the intersubunit disulfide bridge is not critical for SP-B function.  相似文献   

14.
Chorioamnionitis is frequent in preterm labor and increases the risk of bronchopulmonary dysplasia. We hypothesized that intra-amniotic endotoxin injures the lung in utero, causing a sequence of inflammation and tissue injury similar to that which occurs in the injured adult lung. Preterm lamb lungs at 125 days gestational age were evaluated for indicators of inflammation, injury, and repair 5 h, 24 h, 72 h, and 7 days after 4 mg of intra-amniotic endotoxin injection. At 5 h, the epithelial cells in large airways expressed heat shock protein 70, and alveolar interleukin-8 was increased. Surfactant protein B (SP-B) decreased in alveolar type II cells at 5 h, and SP-B in lung tissue and alveolar lavage fluid increased by 72 h. By 24 h, neutrophils were recruited into the large airways, and cell death was the highest. Alveolar type II cells decreased by 25% at 24 h, and proliferation was highest at 72 h, consistent with tissue remodeling. Intra-amniotic endotoxin caused surfactant secretion, inflammation, cell death, and remodeling as indications of lung injury. The recovery phase was accompanied by maturational changes in the fetal lung.  相似文献   

15.
Types A and B Niemann-Pick disease (NPD) are lipid storage disorders caused by the deficient activity of acid sphingomyelinase (ASM). In humans, NPD is associated with the dysfunction of numerous organs including the lung. Gene targeting of the ASM gene in transgenic mice produced an animal model with features typical of NPD, including pulmonary inflammation. To assess mechanisms by which ASM perturbed lung function, we studied lung morphology, surfactant content, and metabolism in ASM-deficient mice in vivo. Pulmonary inflammation, with increased cellular infiltrates and the accumulation of alveolar material, was associated with alterations in surfactant content. Saturated phosphatidylcholine (SatPC) content was increased twofold, and sphingomyelin content was increased 5.5-fold in lungs of the ASM knockout (ASMKO) mice. Additional sphingomyelin enhanced the sensitivity of surfactant inhibition by plasma proteins. Clearance of SatPC from the lungs of ASMKO mice was decreased. Catabolism of SatPC by alveolar macrophages from the ASMKO mouse was significantly decreased, likely accounting for decreased pulmonary SatPC in vivo. In summary, ASM is required for normal surfactant catabolism by alveolar macrophages in vivo. Alterations in surfactant composition, including increased sphingomyelin content, contributed to the abnormal surfactant function observed in the ASM-deficient mouse.  相似文献   

16.
Pulmonary surfactant dysfunction may significantly contribute to small airway obstruction during the asthmatic response, but neither its exact role nor its regulation is clear. Surfactant function and composition was studied in an Aspergillus fumigatus (Af)-induced late-phase allergic airway response in sensitized BALB/c mice. The peak of Af-induced airway hyperresponsiveness in sensitized and challenged mice 24 h after allergen provocation coincided with a significant fall in surface activity of the pulmonary surfactant. The underlying changes included time-dependent elaboration of eotaxin and IL-5 followed by eosinophil influx into the airways. The height of airway inflammation and hyperresponsiveness was preceded by release of IL-4 and marked reductions in surfactant protein (SP)-B, a hydrophobic surfactant protein responsible for maintaining low surface tension of the lining fluid of distal air spaces. Furthermore, intratracheal administration of IL-4 significantly inhibited SP-B, indicating a regulatory role of this cytokine in the surfactant biophysical changes. Thus surfactant dysfunction induced by an IL-4-driven SP-B deficiency after allergen provocation may be an important part of the late asthmatic airway response.  相似文献   

17.
Intratracheal bleomycin in rats is associated with respiratory distress of uncertain etiology. We investigated the expression of surfactant components in this model of lung injury. Maximum respiratory distress, determined by respiratory rate, occurred at 7 days, and surfactant dysfunction was confirmed by increased surface tension of the large-aggregate fraction of bronchoalveolar lavage (BAL). In injured animals, phospholipid content and composition were similar to those of controls, mature surfactant protein (SP) B was decreased 90%, and SP-A and SP-D contents were increased. In lung tissue, SP-B and SP-C mRNAs were decreased by 2 days and maximally at 4--7 days and recovered between 14 and 21 days after injury. Immunostaining of SP-B and proSP-C was decreased in type II epithelial cells but strong in macrophages. By electron microscopy, injured lungs had type II cells lacking lamellar bodies and macrophages with phagocytosed lamellar bodies. Surface activity of BAL phospholipids of injured animals was restored by addition of exogenous SP-B. We conclude that respiratory distress after bleomycin in rats results from surfactant dysfunction in part secondary to selective downregulation of SP-B and SP-C.  相似文献   

18.
Surfactant protein A (SP-A) and surfactant protein D (SP-D) are important components of innate immunity that can modify the inflammatory response. However, alterations and regulation of SP-A and SP-D in acute and chronic inflammation are not well defined. In addition, serum SP-D may serve as a biomarker of lung inflammation. We determined the expression of SP-A and SP-D in murine models. To study acute inflammation, we instilled bleomycin intrabronchially. To study chronic lung inflammation, we used a transgenic mouse that overexpresses tumor necrosis factor (TNF)-alpha under the control of the SP-C promoter. These mice have a chronic mononuclear cell infiltration, airspace enlargement, pulmonary hypertension, and focal pulmonary fibrosis. In acute inflammation model, levels of mRNA for all surfactant proteins were reduced after bleomycin administration. However, serum SP-D was increased from days 7 to 28 after instillation. In chronic inflammation model, SP-D mRNA expression was increased, whereas the expression of SP-A, SP-B and SP-C was reduced. Both serum and lung SP-D concentrations were increased in chronic lung inflammation. These data clarified profile of SP-A and SP-D in acute and chronic inflammation and indicated that serum SP-D can serve as a biomarker of lung inflammation in both acute and chronic lung injury in mice.  相似文献   

19.
Interleukin (IL)-13, a key mediator of Th2-mediated immunity, contributes to the pathogenesis of asthma and other pulmonary diseases via its ability to generate fibrosis, mucus metaplasia, eosinophilic inflammation, and airway hyperresponsiveness. In these studies, we compared surfactant accumulation in wild-type mice and mice in which IL-13 was overexpressed in the lung. When compared with littermate controls, transgenic animals showed alveolar type II cell hypertrophy under light and electron microscopy. Over time, their alveoli also filled with surfactant in a pulmonary alveolar proteinosis pattern. At the same time, prominent interstitial fibrosis occurs. Bronchoalveolar lavage fluid from these mice had a three- to sixfold increase in surfactant phospholipids. Surfactant proteins (SP)-A, -B, and -C showed two- to threefold increases, whereas SP-D increased 70-fold. These results indicate that IL-13 is a potent stimulator of surfactant phospholipid and surfactant accumulation in the lung. IL-13 may therefore play a central role in the broad range of chronic pulmonary conditions in which fibrosis, type II cell hypertrophy, and surfactant accumulation occur.  相似文献   

20.
Pulmonary surfactant is a lipid-protein complex that coats the alveolar air-liquid interface, enabling the proper functioning of lung mechanics. The hydrophobic surfactant protein SP-B, in particular, plays an indispensable role in promoting the rapid adsorption of phospholipids into the interface. For this, formation of SP-B ring-shaped assemblies seems to be important, as oligomerization could be required for the ability of the protein to generate membrane contacts and to mediate lipid transfer among surfactant structures. SP-B, together with the other hydrophobic surfactant protein SP-C, also promotes permeability of surfactant membranes to polar molecules although the molecular mechanisms underlying this property, as well as its relevance for the surface activity of the protein, remain undefined. In this work, the contribution of SP-B and SP-C to surfactant membrane permeability has been further investigated, by evaluation of the ability of differently-sized fluorescent polar probes to permeate through giant vesicles with different lipid/protein composition. Our results are consistent with the generation by SP-B of pores with defined size in surfactant membranes. Furthermore, incubation of surfactant with an anti-SP-B antibody not only blocked membrane permeability but also affected lipid transfer into the air-water interface, as observed in a captive bubble surfactometer device. Our findings include the identification of SP-C and anionic phospholipids as modulators required for maintaining native-like permeability features in pulmonary surfactant membranes. Proper permeability through membrane assemblies could be crucial to complement the overall role of surfactant in maintaining alveolar equilibrium, beyond its biophysical function in stabilizing the respiratory air-liquid interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号