首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
非对称二甲基精氨酸(asymmetric dimethylarginine,ADMA)是一氧化氮合酶(NOS)的内源性竞争性抑制物,竞争性抑制NOS使NO含量减少,引起一系列血管异常效应。二甲基精氨酸Z-甲基氨基水解酶(dimethylarginine dimethylaminohydrolase,DDAH)是主导ADMA代谢的催化酶。DDAH减少或活性降低会使ADMA在体内积累,导致内皮功能异常。本文介绍了DDAH引起内皮功能异常的机制,并对有关影响DDAH活性或表达的药物研究作一概述。  相似文献   

2.
Although high-energy phosphate metabolism is abnormal in failing hearts [congestive heart failure (CHF)], it is unclear whether oxidative capacity is impaired. This study used the mitochondrial uncoupling agent 2,4-dinitrophenol (DNP) to determine whether reserve oxidative capacity exists during the high workload produced by catecholamine infusion in hypertrophied and failing hearts. Left ventricular hypertrophy (LVH) was produced by ascending aortic banding in 21 swine; 9 animals developed CHF. Basal myocardial phosphocreatine (PCr)/ATP measured with 31P NMR spectroscopy was decreased in both LVH and CHF hearts (corresponding to an increase in free [ADP]), whereas ATP was decreased in hearts with CHF. Infusion of dobutamine and dopamine (each 20 microg. kg-1. min-1 iv) caused an approximate doubling of myocardial oxygen consumption (MVO2) in all groups and decreased PCr/ATP in the normal and LVH groups. During continuing catecholamine infusion, DNP (2-8 mg/kg iv) caused further increases of MVO2 in normal and LVH hearts with no change in PCr/ATP. In contrast, DNP caused no increase in MVO2 in the failing hearts; the associated decrease of PCr/ATP suggests that DNP decreased the mitochondrial proton gradient, thereby causing ADP to increase to maintain adequate ATP synthesis.  相似文献   

3.
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase and is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Elevated levels of circulating ADMA correlate with various cardiovascular pathologies less is known about the cellular effects of altered DDAH activity. We modified DDAH activity in cells and measured the changes in ADMA levels, morphological phenotypes on Matrigel, and expression of vascular endothelial growth factor (VEGF). DDAH over-expressing ECV304 cells secreted less ADMA and when grown on Matrigel had enhanced tube formation compared to untransfected cells. VEGF mRNA levels were 2.1-fold higher in both ECV304 and murine endothelial cells (sEnd.1) over-expressing DDAH. In addition the DDAH inhibitor, S-2-amino-4(3-methylguanidino)butanoic acid (4124W 1mM), markedly reduced human umbilical vein endothelial cell tube formation in vitro. We have found that upregulating DDAH activity lowers ADMA levels, increases the levels of VEGF mRNA in endothelial cells, and enhances tube formation in an in vitro model, whilst blockade of DDAH reduces tube formation.  相似文献   

4.
This study examined high-energy phosphates (HEP) and mitochondrial ATPase protein expression in hearts in which myocardial infarction resulted in either compensated left ventricular remodeling (LVR) or congestive heart failure (CHF). The response of HEP (measured via (31)P magnetic resonance spectroscopy) to a modest increase in the cardiac work state produced by dobutamine-dopamine infusion and pacing (if needed) was examined in 17 pigs after left circumflex coronary artery ligation (9 with LVR and 8 with CHF) and compared with 7 normal pigs. In hearts with LVR, the baseline phosphocreatine (PCr)-to-ATP ratio decreased, and calculated ADP increased; these changes were most severe in hearts with CHF. HEP levels did not change in normal or LVR hearts during dobutamine-dopamine infusion. However, in hearts with CHF, the PCr-to-ATP ratio decreased further, and free ADP increased. The mitochondrial protein levels of the F(0)F(1)-ATPase subunits were normal in hearts with compensated LVR. However, in failing hearts, the alpha-subunit decreased by 36%, the beta-subunit decreased by 16%, the oligomycin sensitivity-conferring protein subunit decreased by 40%, and the initiation factor 1 subunit decreased by 41%. Thus in failing hearts, reductions in mitochondrial F(0)F(1)-ATPase protein expression are associated with increased myocardial free ADP.  相似文献   

5.
This study examined whether increased superoxide (O(2)(-).) production contributes to coronary endothelial dysfunction and decreased coronary blood flow (CBF) in congestive heart failure (CHF). To test this hypothesis, the effects of the low-molecular-weight SOD mimetic M40401 on CBF and myocardial oxygen consumption (MVo(2)) were examined in dogs during normal conditions and after CHF was produced by 4 wk of rapid ventricular pacing. The development of CHF was associated with decreases of left ventricular (LV) systolic pressure, maximum first derivative of LV pressure, MVo(2), and CBF at rest and during treadmill exercise as well as endothelial dysfunction with impaired vasodilation in response to intracoronary acetylcholine. M40401 increased CBF (18 +/- 5%, P < 0.01) and MVo(2) (14 +/- 6%, P < 0.01) in CHF dogs and almost totally reversed the impaired CBF response to acetylcholine. M40401 had no effect on acetylcholine-induced coronary vasodilation, CBF, or MVo(2) in normal dogs. Western blot analysis demonstrated that extracellular SOD (EC-SOD) was significantly decreased in CHF hearts, whereas mitochondrial Mn-containing SOD was increased. Cytosolic Cu/Zn-containing SOD was unchanged. Both increased O(2)(-). production and decreased vascular O(2)(-). scavenging ability by EC-SOD could have contributed to endothelial dysfunction in the failing hearts.  相似文献   

6.
Asymmetric (N(G),N(G))-dimethylarginine (ADMA) inhibits nitric oxide (NO) synthases (NOS). ADMA is a risk factor for endothelial dysfunction, cardiovascular mortality, and progression of chronic kidney disease. Two isoforms of dimethylarginine dimethylaminohydrolase (DDAH) metabolize ADMA. DDAH-1 is the predominant isoform in the proximal tubules of the kidney and in the liver. These organs extract ADMA from the circulation. DDAH-2 is the predominant isoform in the vasculature, where it is found in endothelial cells adjacent to the cell membrane and in intracellular vesicles and in vascular smooth muscle cells among the myofibrils and the nuclear envelope. In vivo gene silencing of DDAH-1 in the rat and DDAH +/- mice both have increased circulating ADMA, whereas gene silencing of DDAH-2 reduces vascular NO generation and endothelium-derived relaxation factor responses. DDAH-2 also is expressed in the kidney in the macula densa and distal nephron. Angiotensin type 1 receptor activation in kidneys reduces the expression of DDAH-1 but increases the expression of DDAH-2. This rapidly evolving evidence of isoform-specific distribution and regulation of DDAH expression in the kidney and blood vessels provides potential mechanisms for nephron site-specific regulation of NO production. In this review, the recent advances in the regulation and function of DDAH enzymes, their roles in the regulation of NO generation, and their possible contribution to endothelial dysfunction in patients with cardiovascular and kidney diseases are discussed.  相似文献   

7.
Cardiac GPCRs: GPCR signaling in healthy and failing hearts   总被引:1,自引:0,他引:1  
G protein-coupled receptors (GPCRs) are widely implicated in human heart disease, making them an important target for cardiac drug therapy. The most commonly studied and clinically targeted cardiac GPCRs include the adrenergic, angiotensin, endothelin, and adenosine receptors. Treatment options focusing on the complex and integrated signaling pathways of these GPCRs are critical for the understanding and amelioration of heart disease. The focus of this review is to highlight the most commonly studied and clinically targeted cardiac GPCRs, placing emphasis on their common signaling components implicated in cardiac disease.  相似文献   

8.
G protein-coupled receptors (GPCRs) are widely implicated in human heart disease, making them an important target for cardiac drug therapy. The most commonly studied and clinically targeted cardiac GPCRs include the adrenergic, angiotensin, endothelin, and adenosine receptors. Treatment options focusing on the complex and integrated signaling pathways of these GPCRs are critical for the understanding and amelioration of heart disease. The focus of this review is to highlight the most commonly studied and clinically targeted cardiac GPCRs, placing emphasis on their common signaling components implicated in cardiac disease.  相似文献   

9.
Because congestive heart failure (CHF) promotes ventricular fibrillation (VF), we compared VF in seven dogs with CHF induced by combined myocardial infarction and rapid ventricular pacing to VF in six normal dogs. A noncontact, multielectrode array balloon catheter provided full-surface real-time left ventricular (LV) endocardial electrograms and a dynamic color-coded display of endocardial activation projected onto a three-dimensional model of the LV. Fast Fourier transform (FFT) analysis of virtual electrograms showed no difference in peak or centroid frequency in CHF dogs compared with normals. The average number of simultaneous noncontiguous wavefronts present during VF was higher in normals (2.4 +/- 1.0 at 10 s of VF) than in CHF dogs (1.3 +/- 1.0, P < 0.005) and decreased in both over time. The wavefront "turnover" rate, estimated using FFT of the noncontiguous wavefront data, did not differ between normals and CHF and did not change over 5 min of VF. Thus the fundamental frequency characteristics of VF are unaltered by CHF, but dilated abnormal ventricles sustain fewer active wavefronts than do normal ventricles.  相似文献   

10.
Disturbances in the cAMP production during -adrenergic stimulation and alterations of Ca 2+ transport controlling proteins and their regulation in the sarcoplasmic reticulum might be involved in the pathogenesis of the failing human heart. Thus, we investigated the cAMP-mediated phosphorylation of phospholamban, troponin I and C-protein in electrically driven, intact isolated trabeculae carneae from nonfailing and failing (NYHA IV) human hearts in parallel to contractile properties on the same tissue samples. The increase in force of contraction induced by isoproterenol (0.2 M) or pimobendan (100 M), a phosphodiesterase inhibitor, was diminished in the failing human hearts compared to nonfailing hearts by 49% and 36%, respectively. Concomitantly the isoproterenol-induced phosphorylation (pmol P/mg homogenate protein) of phospholamban, troponin I and C-protein was reduced from 13.0 ± 2.4 (n = 4), 30.5 ± 1.5 (n = 5) and 11.0 ± 1.3 (n = 5) in the nonfailing heart to 5.2 ±0.6 (n = 13), 14.6 ± 2.2 (n = 16) and 7.1 ± 1.0 (n = 6) in the failing human heart, respectively. Pimobendan changed the phosphorylation state of these proteins similar to isoproterenol. The fact that combined addition of both agents or dibuturyl CAMP (1 mM) alone restored the phosphorylation capacity as observed in the control groups indicates that i) a reduced cAMP generation is related to the reduced phosphorylation of regulatory phosphoproteins located in the sarcoplasmic reticulum and contractile apparatus e.g. phospholamban, troponin I and C-protein, that ii) there is a relationship between protein phosphorylation state and contractile activity and that iii) no changes in the respective content of phosphoproteins are involved in the limitation of cAMP-mediated inotopic activity in the failing human heart. (Mol Cell Biochem 157: 171–179, 1996)  相似文献   

11.
12.
正Dear Editor,The coronavirus disease 2019(COVID-19) pandemic, which is caused by SARS-Co V-2, has gained serious attention from medical practitioners around the world in the past few months. Approximately 20% of critically ill COVID-19 patients were reported to have suffered myocardial injury. The specific mechanism of this pathology requires further investigation(Yang et al., 2020).  相似文献   

13.
The effect of ischemic preconditioning and superoxide dismutase (SOD) on endothelial glycocalyx and endothelium-dependent vasodilation in the postischemic isolated guinea-pig hearts was examined. Seven groups of hearts were used: group 1 underwent sham aerobic perfusion; group 2 was subjected to 40 min global ischemia without reperfusion; group 3, 40 min ischemia followed by 40 min reperfusion; group 4 was preconditioned with three cycles of 5 min global ischemia followed by 5 min of reperfusion (IPC), prior to 40 min ischemia; group 5 was subjected to IPC prior to standard ischemia/reperfusion; group 6 underwent standard ischemia/reperfusion and SOD infusion (150 U/ml) was begun 5 min before 40 min ischemia and continued during the initial 5 min of the reperfusion period; group 7 was subjected to 80 min aerobic perfusion with NO-synthase inhibitor, L-NAME, to produce a model of endothelial dysfunction independent from the ischemia/reperfusion. Coronary flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were used as measures of endothelium-dependent and endothelium-independent vascular function, respectively. Reduction in coronary flow caused by NO-synthase inhibitor, L-NAME, served as a measure of a basal endothelium-dependent vasodilator tone. After completion of each experimental protocol, the hearts were stained with ruthenium red or lanthanum chloride for electron microscopy evaluation of the endothelial glycocalyx. While ischemia led only to a slightly flocculent appearance of the glycocalyx, in ischemia/reperfused hearts the glycocalyx was disrupted, suggesting that it is the reperfusion injury which leads to the glycocalyx injury. Moreover, the coronary flow responses to ACh and L-NAME were impaired, while the responses to SNP were unchanged in the ischemia/reperfused hearts. The disruption of the glycocalyx and the deterioration of ACh and L-NAME responses was prevented by IPC. In addition, the alterations in the glycocalyx and the impairment of ACh responses were prevented by SOD. The glycocalyx appeared to be not changed in the hearts subjected to 80 min aerobic perfusion with L-NAME. In conclusion: (1) the impairment of the endothelium-dependent coronary vasodilation is paralleled by the endothelial glycocalyx disruption in the postischemic guinea-pig hearts; (2) both these changes are prevented by SOD, suggesting the role of free radicals in the mechanism of their development; (3) both changes are prevented by IPC. We hypothesize, therefore, that alterations in the glycocalyx contribute to the mechanism of the endothelial dysfunction in the postischemic hearts.  相似文献   

14.
Cardiac Purkinje fibers play an important role in cardiac arrhythmias, but no information is available about ionic currents in human cardiac Purkinje cells (PCs). PCs and midmyocardial ventricular myocytes (VMs) were isolated from explanted human hearts. K(+) currents were evaluated at 37 degrees C with whole cell patch clamp. PCs had clear inward rectifier K(+) current (I(K1)), with a density not significantly different from VMs between -110 and -20 mV. A Cs(+)-sensitive, time-dependent hyperpolarization-activated current was measurable negative to -60 mV. Transient outward current (I(to)) density was smaller, but end pulse sustained current (I(sus)) was larger, in PCs vs. VMs. I(to) recovery was substantially slower in PCs, leading to strong frequency dependence. Unlike VM I(to), which was unaffected by 10 mM tetraethylammonium, Purkinje I(to) was strongly inhibited by tetraethylammonium, and Purkinje I(to) was 10-fold more sensitive to 4-aminopyridine than VM. PC I(sus) was also reduced strongly by 10 mM tetraethylammonium. In conclusion, human PCs demonstrate a prominent I(K1), a time-dependent hyperpolarization-activated current, and an I(to) with pharmacological sensitivity and recovery kinetics different from those in the atrium or ventricle and compatible with a different molecular basis.  相似文献   

15.
To elucidate the synthesis of atrial natriuretic polypeptide (ANP) in the failing heart, eighteen human right auricles obtained at cardiovascular surgery were studied. The concentration of alpha-human ANP-like immunoreactivity (alpha-hANP-LI) in human right auricles ranged from 13.8 to 593.5 micrograms/g, and the tissue alpha-hANP-LI concentration in severe congestive heart failure (CHF) (New York Heart Association (NYHA) functional class III or IV) was much higher than those in mild CHF of NYHA class I and class II. The alpha-hANP-LI in the human auricle consisted of 3 major components of ANP, gamma-human ANP (gamma-hANP), beta-human ANP (beta-hANP) and alpha-human ANP (alpha-hANP). The predominant component of alpha-hANP-LI was gamma-hANP in the mild CHF, whereas beta-hANP and/or alpha-hANP were prevailing in the severe CHF and, especially, beta-hANP was markedly increased in human failing hearts.  相似文献   

16.
17.
Heart failure (HF) produces important alterations in currents underlying cardiac repolarization, but the transmural distribution of such changes is unknown. We therefore recorded action potentials and ionic currents in cells isolated from the endocardium, midmyocardium, and epicardium of the left ventricle from dogs with and without tachypacing-induced HF. HF greatly increased action potential duration (APD) but attenuated APD heterogeneity in the three regions. Early afterdepolarizations (EADs) were observed in all cell types of failing hearts but not in controls. Inward rectifier K(+) current (I(K1)) was homogeneously reduced by approximately 41% (at -60 mV) in the three cell types. Transient outward K(+) current (I(to1)) was decreased by 43-45% at +30 mV, and the slow component of the delayed rectifier K(+) current (I(Ks)) was significantly downregulated by 57%, 49%, and 58%, respectively, in epicardial, midmyocardial, and endocardial cells, whereas the rapid component of the delayed rectifier K(+) current was not altered. The results indicate that HF remodels electrophysiology in all layers of the left ventricle, and the downregulation of I(K1), I(to1), and I(Ks) increases APD and favors occurrence of EADs.  相似文献   

18.
To identify possible alterations of the L-type calcium currents (ICa,L) in cardiomyopathy, ICa,L were recorded in atrial myocytes dissociated from the nonfailing heart (NF) of patients undergoing corrective open-heart surgery and explanted failing heart (FH) of patients with dilated cardiomyopathy undergoing heart transplantation. The patch-clamp technique was applied in the single-electrode whole-cell mode. The electrophysiological properties of ICa,L, including cell capacitance and current density, were similar in atrial myocytes from both groups of patients. Further to identify possible alterations of the myocardial beta-adrenergic pathway in cardiomyopathy, we examined the effects of isoproterenol, forskolin, 8-Br-cAMP and IBMX on ICa,L in both groups of atrial myocytes. Perfusion of isoproterenol (1 M) significantly increased the peak ICa,L by 515 ± 44% in 6 atrial myocytes from NF but increased only by 135 ± 25% in 27 atrial myocytes from FH. However, forskolin (1 M) or 8-Br-cAMP (0.1 mM) increased the peak ICa,L to a similar extent in atrial myocytes from NF and FH. IBMX (20 M) also induced a comparable increase in the peak ICa,L by 213 ± 31% (n=5) and 207 ± 59% (n=4) in atrial myocytes from NF and FH, respectively. The above findings suggest that in atrial myocytes obtained from FH the beta-adrenoceptor numbers might be decreased but no impairment of the signal transduction cascade occurred beyond the GTP binding proteins level.  相似文献   

19.
After myocardial infarction, ventricular geometry and function, as well as energy metabolism, change markedly. In nonischemic heart failure, inhibition of xanthine oxidase (XO) improves mechanoenergetic coupling by improving contractile performance relative to a reduced energetic demand. However, the metabolic and contractile effects of XO inhibitors (XOIs) have not been characterized in failing hearts after infarction. After undergoing permanent coronary ligation, mice received a XOI (allopurinol or oxypurinol) or matching placebo in the daily drinking water. Four weeks later, 1H MRI and 31P magnetic resonance spectroscopy (MRS) were used to quantify in vivo functional and metabolic changes in postinfarction remodeled mouse myocardium and the effects of XOIs on that process. End-systolic (ESV) and end-diastolic volumes (EDV) were increased by more than sixfold after infarction, left ventricle (LV) mass doubled (P < 0.005), and the LV ejection fraction (EF) decreased (14 +/- 9%) compared with control hearts (59 +/- 8%, P < 0.005) at 1 mo. The myocardial phosphocreatine (PCr)-to-ATP ratio (PCr/ATP) was also significantly decreased in infarct remodeled hearts (1.4 +/- 0.6) compared with control animals (2.1 +/- 0.5, P < 0.02), in agreement with prior studies in larger animals. The XOIs allopurinol and oxypurinol did not change LV mass but limited the increase in ESV and EDV of infarct hearts by 50%, increased EF (23 +/- 9%, P = 0.01), and normalized cardiac PCr/ATP (2.0 +/- 0.5, P < 0.04). We conclude that XOIs improve ventricular function after infarction and normalize high-energy phosphate ratio in heart failure. Thus XOI therapy offers a new and potentially complementary approach to limit the adverse contractile and metabolic consequences after infarction.  相似文献   

20.
四氢生物蝶呤与血管内皮功能异常   总被引:2,自引:0,他引:2  
Zheng JS  Lin L  Ren J  Chen AF 《生理科学进展》2004,35(2):155-158
血管内皮功能异常突出表现为内皮依赖性血管舒张功能障碍 ,主要由NO减少及氧自由基增加所致。四氢生物蝶呤 (tetrahydrobiopterin ,BH4 )是NO合酶 (NOS)的必要辅助因子 ,影响NO和氧自由基生成。BH4充足时 ,NOS催化底物L 精氨酸和O2 生成L 胍氨酸和NO ;BH4缺乏时 ,NOS则发生脱偶联 (uncoupling) ,主要催化超氧阴离子产生。BH4缺乏是高血压、糖尿病、动脉粥样硬化等疾病中内皮功能异常的重要原因 ,用BH4替代治疗提高内皮细胞内BH4水平可有效改善内皮功能 ,可望为保护血管内皮功能提供有效途径  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号