首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of functional coupling between mitochondrial creatine kinase (MiCK) and adenine nucleotide translocase (ANT) in isolated heart mitochondria is analyzed. Two alternative mechanisms are studied: 1), dynamic compartmentation of ATP and ADP, which assumes the differences in concentrations of the substrates between intermembrane space and surrounding solution due to some diffusion restriction and 2), direct transfer of the substrates between MiCK and ANT. The mathematical models based on these possible mechanisms were composed and simulation results were compared with the available experimental data. The first model, based on a dynamic compartmentation mechanism, was not sufficient to reproduce the measured values of apparent dissociation constants of MiCK reaction coupled to oxidative phosphorylation. The second model, which assumes the direct transfer of substrates between MiCK and ANT, is shown to be in good agreement with experiments—i.e., the second model reproduced the measured constants and the estimated ADP flux, entering mitochondria after the MiCK reaction. This model is thermodynamically consistent, utilizing the free energy profiles of reactions. The analysis revealed the minimal changes in the free energy profile of the MiCK-ANT interaction required to reproduce the experimental data. A possible free energy profile of the coupled MiCK-ANT system is presented.  相似文献   

2.
The synthesis of creatine phosphate (CP) by mitochondrial creatine kinase during oxidative phosphorylation was terminated when the mass action ratio of the creatine kinase reaction = [ADP]·[CP][ATP]·[Cr] became equal to the apparent equilibrium constant (K eq app) of this reaction. Subsequent excess of over the K eq app was due to an increase in the ADP concentration in the medium. A comparable increase in the ADP concentration also occurred in the absence of creatine (Cr) in the incubation medium. Increase in the ADP concentration was shown to be associated with a decrease in the rate of oxidative phosphorylation and with a relative increase in the ATPase activity of mitochondria during the incubation. A low concentration of ADP (<30 M) and relatively high concentrations (1-6 mM) of other components of the creatine kinase reaction prevented the detection of the reverse reaction within 10 min after exceeded the K eq app, but the reverse reaction became evident on more prolonged incubation. The reverse reaction was accompanied by a further increase in . Low ADP concentration in the medium was also responsible for the lack of an immediate conversion of the excess creatine phosphate added although > K eq app. The findings are concluded to be in contradiction with the concept of microcompartment formation between mitochondrial creatine kinase and adenine nucleotide translocase.  相似文献   

3.
Interaction between mitochondrial creatine kinase (MtCK) and adenine nucleotide translocase (ANT) can play an important role in determining energy transfer pathways in the cell. Although the functional coupling between MtCK and ANT has been demonstrated, the precise mechanism of the coupling is not clear. To study the details of the coupling, we turned to molecular dynamics simulations. We introduce a new coarse-grained molecular dynamics model of a patch of the mitochondrial inner membrane containing a transmembrane ANT and an MtCK above the membrane. The membrane model consists of three major types of lipids (phosphatidylcholine, phosphatidylethanolamine, and cardiolipin) in a roughly 2:1:1 molar ratio. A thermodynamics-based coarse-grained force field, termed MARTINI, has been used together with the GROMACS molecular dynamics package for all simulated systems in this work. Several physical properties of the system are reproduced by the model and are in agreement with known data. This includes membrane thickness, dimension of the proteins, and diffusion constants. We have studied the binding of MtCK to the membrane and demonstrated the effect of cardiolipin on the stabilization of the binding. In addition, our simulations predict which part of the MtCK protein sequence interacts with the membrane. Taken together, the model has been verified by dynamical and structural data and can be used as the basis for further studies.  相似文献   

4.
The kinetic coupling of mitochondrial creatine kinase (MiMi-CK) to ADP/ATP translocase in chicken heart mitochondrial preparations is demonstrated. Measuring the MiMi-CK apparent Km value for MgATP2- (at saturating creatine) gives a value of 36 microM when MiMi-CK is coupled to oxidative phosphorylation. This Km value is threefold lower than the Km for enzyme bound to mitoplasts or free in solution. The nucleotide translocase Km value for ADP decreases from 20 to 10 microM in the presence of 50 mM creatine only with intact mitochondria. Similar experiments with mitoplasts do not give decreased Km values. The observed Km differences can be used to calculate the concentration of ATP and ADP under steady-state conditions showing that the observed differences in the kinetic constants accurately reflect the enzyme activities of MiMi-CK under the different conditions. The behavior of the Km values provides evidence for what we term compartmented coupling. Therefore, like the rabbit heart system (S. Erickson-Viitanen, P. Viitanen, P. J. Geiger, W. C. T. Yang, and S. P. Bessman (1982) J. Biol. Chem. 257, 14395-14404) compartmented coupling requires an intact outer mitochondrial membrane. The apparent Km values for normal or compartmentally coupled systems can be used to calculate steady-state values of ATP and ADP by coupling enzyme theory. Hence, the overall kinetic parameters accurately reflect the behavior of the enzymes whether free in solution or in the intermembrane space.  相似文献   

5.
6.
P R Sears  P F Dillon 《Biochemistry》1999,38(45):14881-14886
The interaction of pyruvate kinase from skeletal (SKPK) and smooth (SMPK) muscle with MM-creatine kinase (MMCK) and BB-creatine kinase (BBCK) was assessed using temporal absorbance changes, variations in absorbance at different wavelengths, concentration dependence, association in an electric field, and PK kinetic activity. SKPK exhibits a time course of absorbance increase in the presence of MMCK with a time constant of 29.5 min. This increase occurs at all wavelength from 240 to 1000 nm. At 195 nm, the combination of SKPK and MMCK produces a decrease in absorption with electric fields of both 0 and 204 V/cm. The change in SKPK-MMCK is saturable. SKPK activity is significantly increased by the presence of MMCK in solutions of 0-32% ethanol. These results indicate specific SKPK-MMCK interaction. SMPK and BBCK did not exhibit similar coupling when the BBCK concentration dependence of absorbance or SMPK activity in solutions of 0-32% ethanol was determined. Both MMCK and BBCK increased SKPK activity; neither MMCK nor BBCK increased SMPK activity. The ability to form diazymatic complexes with creatine kinase appears to reside in SKPK. This coupling may account for the increased flux through PK without significant substrate changes seen during skeletal muscle activation. This coupling will not occur in smooth muscle.  相似文献   

7.
Adenine nucleotide translocase inhibitors, atractyloside and carboxyatractyloside, added to respiration inhibited rat heart mitochondria had no significant effects on the apparent Km's for ATP and ADP and Vmax's of the creatine kinase reaction. The results suggest that there is no sequential, mandatory, direct transfer of the nucleotides between the translocase and the creatine kinase active site. The reaction was run in both the forward and reverse directions in media containing either 0.25 M sucrose or 0.13 M KCl. The apparent Km's, however, were found to be 2–3 times higher in the KCl medium than in sucrose, suggesting the use of the more physiological medium for meaningful kinetic studies.  相似文献   

8.
The adenine nucleotide translocase (ANT) mediates the exchange of ADP and ATP across the inner mitochondrial membrane. The human genome encodes multiple ANT isoforms that are expressed in a tissue-specific manner. Recently a novel germ cell-specific member of the ANT family, ANT4 (SLC25A31) was identified. Although it is known that targeted depletion of ANT4 in mice resulted in male infertility, the functional biochemical differences between ANT4 and other somatic ANT isoforms remain undetermined. To gain insight into ANT4, we expressed human ANT4 (hANT4) in yeast mitochondria. Unlike the somatic ANT proteins, expression of hANT4 failed to complement an AAC-deficient yeast strain for growth on media requiring mitochondrial respiration. Moreover, overexpression of hANT4 from a multi-copy plasmid interfered with optimal yeast growth. However, mutation of specific amino acids of hANT4 improved yeast mitochondrial expression and supported growth of the AAC-deficient yeast on non-fermentable carbon sources. The mutations affected amino acids predicted to interact with phospholipids, suggesting the importance of lipid interactions for function of this protein. Each mutant hANT4 and the somatic hANTs exhibited similar ADP/ATP exchange kinetics. These data define common and distinct biochemical characteristics of ANT4 in comparison to ANT1, 2 and 3 providing a basis for study of its unique adaptation to germ cells.  相似文献   

9.
10.
The process of skeletal muscle aging is characterized by a progressive loss of muscle mass and functionality. The underlying mechanisms are highly complex and remain unclear. This study was designed to further investigate the consequences of aging on mitochondrial oxidative phosphorylation in rat gastrocnemius muscle, by comparing young (6 months) and aged (21 months) rats. Maximal oxidative phosphorylation capacity was clearly reduced in older rats, while mitochondrial efficiency was unaffected. Inner membrane properties were unaffected in aged rats since proton leak kinetics were identical to young rats. Application of top-down control analysis revealed a dysfunction of the phosphorylation module in older rats, responsible for a dysregulation of oxidative phosphorylation under low activities close to in vivo ATP turnover. This dysregulation is responsible for an impaired mitochondrial response toward changes in cellular ATP demand, leading to a decreased membrane potential which may in turn affect ROS production and ion homeostasis. Based on our data, we propose that modification of ANT properties with aging could partly explain these mitochondrial dysfunctions.  相似文献   

11.
The effects of endurance training (running 40 m/min grade for 60 min, 5 days/wk for 8 wk) on skeletal muscle lactate removal was studied in rats by utilizing the isolated hindlimb perfusion technique. Hindlimbs were perfused (single-pass) with Krebs-Henseleit bicarbonate buffer, fresh bovine erythrocytes (hematocrit approximately 30%), 10 mM lactate, and [U-14C]lactate (30,000 dpm/ml). Arterial and venous blood samples were collected every 10 min for the duration of the experiment to assess lactate uptake. During perfusions, no significant differences in skeletal muscle lactate uptake were observed between trained (7.31 +/- 0.20 micromol/min) and control hindlimbs (6.98 +/- 0.43 micromol/min). In support, no significant differences were observed for [14C]lactate uptake in trained (22,776 +/- 370 dpm/min) compared with control hindlimbs (21,924 +/- 1,373 dpm/min). Concomitant with these observations, no significant differences were observed between groups for oxygen consumption (4.93 +/- 0.18 vs. 4.92 +/- 0.13 micromol/min), net skeletal muscle glycogen synthesis (7.1 +/- 0.4 vs. 6.5 +/- 0.3 micromol x 40 min(-1) x g(-1)), or 14CO2 production (2,203 +/- 185 vs. 2,098 +/- 155 dpm/min), trained and control, respectively. These findings indicate that endurance training does not affect lactate uptake or alter the metabolic fate of lactate in quiescent skeletal muscle.  相似文献   

12.
Dystrophic chicken breast muscle mitochondria contain significantly less mitochondrial creatine kinase than normal breast muscle mitochondria. Breast muscle mitochondria from normal 16- to 40-day-old chickens contain approximately 80 units of mitochondrial creatine kinase per unit of succinate:INT (p-iodonitrotetrazolium violet) reductase, a mitochondrial marker, while dystrophic chicken breast muscle mitochondria contain 36-44 units. Normal chicken heart muscle mitochondria contain about 10% of the mitochondrial creatine kinase per unit of succinate:INT reductase as normal breast muscle mitochondria. The levels in heart muscle mitochondria from dystrophic chickens are not affected significantly. Evidence is presented which shows that the reduced level of mitochondrial creatine kinase in dystrophic breast muscle mitochondria is responsible for an altered creatine linked respiration. First, both normal and dystrophic breast muscle mitochondria respire with the same state 3 and state 4 respiration. Second, the post-ADP state 4 rate of respiration of normal breast muscle mitochondria in the presence of 20 mM creatine continues at the state 3 rate. However, the state 4 rate of dystrophic breast muscle mitochondria and mitochondria from other muscle types with a low level of mitochondrial creatine kinase, such as heart muscle and 5-day-old chicken breast muscle, is slower than the state 3 rate. Third, dystrophic breast mitochondria synthesize ATP at the same rate as normal breast muscle mitochondria but rates of creatine phosphate synthesis in 20-50 mM Pi are reduced significantly. Finally, increasing concentrations of Pi displace mitochondrial creatine kinase from mitoplasts of normal and dystrophic breast muscle mitochondria with the same apparent KD, indicating that the outer surface of the inner mitochondrial membrane and the mitochondrial creatine kinase from dystrophic muscle are not altered.  相似文献   

13.
Objective: This study investigated gender-dependent differences of mitochondrial function and sensitivity to in vitro ROS exposure in rat skeletal muscle at rest and after exercise training.

Methods: Wistar rats underwent running training for 6 weeks. In vitro measurements of hydroxyl radical production, oxygen consumption (under basal and maximal respiration conditions) and ATP production were made on permeabilized fibers. Mitochondrial function was examined after exposure and non-exposure to an in vitro generator system of reactive oxygen species (ROS). Antioxidant enzyme activities and malondialdehyde (MDA) content were also determined.

Results: Compared with sedentary males, females showed a greater resistance of mitochondrial function (oxygen consumption and ATP production) to ROS exposure, and lower MDA content and antioxidant enzyme activities. The training protocol had more beneficial effects in males than females with regard to ROS production and oxidative stress. In contrast to male rats, the susceptibility of mitochondrial function to ROS exposure in trained females was unchanged.

Discussion: Exercise training improves mitochondrial function oxidative capacities in both male and female rats, but is more pronounced in males as a result of different mechanisms. The resistance of mitochondrial function to in vitro oxidative stress exposure and the antioxidant responses are gender- and training-dependent, and may be related to the protective effects of estrogen.  相似文献   


14.
15.
1. During late foetal and early post-natal development of rabbit skeletal muscle the total protein increased more rapidly than the non-protein nitrogen content per g. wet wt. 2. AMP-deaminase activity of rabbit leg muscles increased rapidly over the period 5-15 days after birth. In diaphragm muscle from the same animal the rapid increase to the adult enzymic activity took place at about the time of birth. 3. The rapid increase in AMP-deaminase activity of leg muscle occurred earlier in animals born relatively mature, such as the chick and guinea pig, than in animals less well developed at birth, such as the rabbit and rat. 4. The pattern of enzymic activity shown by AMP deaminase during development in diaphragm, leg and cardiac muscles in a given species was closely paralleled by those of adenylate kinase and creatine phosphokinase. 5. When young rabbits were encouraged to become active at an earlier stage than is normal, the rise in creatine-phosphokinase activity occurred at an earlier age than in the control animals. 6. The results suggest that the activity pattern of the muscle is an important factor in determining the time at which the activities of the enzymes of special significance for muscle rise sharply to the adult values. 7. Development in rabbit leg muscle also involved an increase in aldolase activity. The pattern of change was similar to that obtained with other enzymes studied.  相似文献   

16.
17.
The creatine/phosphocreatine circuit provides an efficient energy buffering and transport system in a variety of cells with high and fluctuating energy requirements. It connects sites of energy production (mitochondria, glycolysis) with sites of energy consumption (various cellular ATPases). The cellular creatine/phosphocreatine pool is linked to the ATP/ADP pool by the action of different isoforms of creatine kinase located at distinct subcellular compartments. Octameric mitochondrial creatine kinase (MtCK), together with porin and adenine nucleotide translocase, forms a microcompartment at contact sites between inner and outer mitochondrial membranes and facilitates the production and export into the cytosol of phosphocreatine. MtCK is probably in direct protein-protein contact with outer membrane porin, whereas interaction with inner membrane adenine nucleotide translocase is rather mediated by acidic phopholipids (like cardiolipin) present in significant amounts in the inner membrane. Octamer-dimer transitions of MtCK as well as different creatine kinase substrates have a profound influence on controlling mitochondrial permeability transition (MPT). Inactivation by reactive oxygen species of MtCK and destabilization of its octameric structure are factors that contribute to impairment of energy homeostasis and facilitated opening of the MPT pore, which eventually lead to tissue damage during periods of ischemia/reperfusion.  相似文献   

18.
19.
20.
Changes in the contents of adenine nucleotides, creatine phosphate, inorganic phosphate, creatine, glucose-6-phosphate and glycogen and the activity of adenylate cyclase, creatine kinase, glycogen phosphorylase 31:51-AMP-phosphodiesterase and glycogen synthetase in muscles and of blood catecholamines were studied in adult rats before loading, immediately after the cessation of the muscular activity, and at rest. Adenine nucleotides are established to play a regulatory role in catabolic and anabolic processes nucleotides are established to play a regulatory role in catabolic and anabolic processes related to the muscular activity. It is established that compensation and supercompensation of the working losses of muscular creatine phosphate and glycogen are due to activation of anabolic processes under conditions of higher phosphorylation of the adenylic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号