首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hoolahan AH  Blok VC  Gibson T  Dowton M 《Genetica》2012,140(1-3):19-29
Recombination is typically assumed to be absent in animal mitochondrial genomes (mtDNA). However, the maternal mode of inheritance means that recombinant products are indistinguishable from their progenitor molecules. The majority of studies of mtDNA recombination assess past recombination events, where patterns of recombination are inferred by comparing the mtDNA of different individuals. Few studies assess contemporary mtDNA recombination, where recombinant molecules are observed as direct mosaics of known progenitor molecules. Here we use the potato cyst nematode, Globodera pallida, to investigate past and contemporary recombination. Past recombination was assessed within and between populations of G. pallida, and contemporary recombination was assessed in the progeny of experimental crosses of these populations. Breeding of genetically divergent organisms may cause paternal mtDNA leakage, resulting in heteroplasmy and facilitating the detection of recombination. To assess contemporary recombination we looked for evidence of recombination between the mtDNA of the parental populations within the mtDNA of progeny. Past recombination was detected between a South American population and several UK populations of G. pallida, as well as between two South American populations. This suggests that these populations may have interbred, paternal mtDNA leakage occurred, and the mtDNA of these populations subsequently recombined. This evidence challenges two dogmas of animal mtDNA evolution; no recombination and maternal inheritance. No contemporary recombination between the parental populations was detected in the progeny of the experimental crosses. This supports current arguments that mtDNA recombination events are rare. More sensitive detection methods may be required to adequately assess contemporary mtDNA recombination in animals.  相似文献   

2.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. The genome contains no introns involved in recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely low and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as the inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophila made it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce.  相似文献   

3.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. Mitochondrial genes lack introns and recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely high and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophilamade it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce.  相似文献   

4.
动物线粒体基因组研究进展   总被引:14,自引:0,他引:14  
对动物线粒体分子生物学的最新研究进展进行了较详细的阐述.从线粒体基因组(mtDNA)的研究背景出发,重点介绍了动物线粒体基因组的组成和结构特点,以及目前动物mtDNA与核基因组的关系、线粒体基因的遗传、起源和进化研究中的热点问题.  相似文献   

5.
We ask whether the observed mitochondrial DNA (mtDNA) population subdivision of Drosophila simulans is indicative of organismal structure or of specific processes acting on the mitochondrial genome. Factors either intrinsic or extrinsic to the host genome may influence the evolutionary dynamics of mtDNA. Potential intrinsic factors include adaptation of the mitochondrial genome and of nucleomitochondrial gene complexes specific to the local environment. An extrinsic force that has been shown to influence mtDNA evolution in invertebrates is the bacterial endosymbiont Wolbachia. Evidence presented in this study suggests that mtDNA is not a good indicator of organismal subdivision in D. simulans. Furthermore, there is no evidence to suggest that Wolbachia causes any reduction in nuclear gene flow in this species. The observed differentiation in mtDNA is not corroborated by data from NADH: ubiquinone reductase 75kD subunit precursor or the Alcohol dehydrogenase-related loci, from the shape or size of the male genital arch, or from assortative premating behavior. We discuss these results in relation to a mitochondrial genetic species concept and the potential for Wolbachia-induced incompatibility to be a mechanism of speciation in insects. We conclude with an iterated appeal to include phylogenetic and statistical tests of neutrality as a supplement to phylogenetic and population genetic analyses when using mtDNA as an evolutionary marker.  相似文献   

6.
Despite the mitochondrion's long‐recognized role in energy production, mitochondrial DNA (mtDNA) variation commonly found in natural populations was assumed to be effectively neutral. However, variation in mtDNA has now been increasingly linked to phenotypic variation in life history traits and fitness. We examined whether the relative fitness in native and invasive common wasp (Vespula vulgaris) populations in Belgium and New Zealand (NZ), respectively, can be linked to mtDNA variation. Social wasp colonies in NZ were smaller with comparatively fewer queen cells, indicating a reduced relative fitness in the invaded range. Interestingly, queen cells in this population were significantly larger leading to larger queen offspring. By sequencing 1,872 bp of the mitochondrial genome, we determined mitochondrial haplotypes and detected reduced genetic diversity in NZ. Three common haplotypes in NZ frequently produced many queens, whereas the four rare haplotypes produced significantly fewer or no queens. The entire mitochondrial genome for each of these haplotypes was sequenced to identify polymorphisms associated with fitness reduction. We found 16 variable sites; however, no nonsynonymous mutation that was clearly causing impaired mitochondrial function was detected. We discuss how detected variants may alter secondary structures, gene expression or mito‐nuclear interactions, or could be associated with nuclear‐encoded variation. Whatever the ultimate mechanism, we show reduced fitness and mtDNA variation in an invasive wasp population as well as specific mtDNA variants associated with fitness variation within this population. Ours is one of only a few studies that confirm fitness impacts of mtDNA variation in wild nonmodel populations.  相似文献   

7.
Penile cancer is a rare neoplasm that seems to be linked to socio-economic differences. Mitochondrial genome alterations are common in many tumors types and are reported as regulating oxidative metabolism and impacting tumorigenesis. In this study, we evaluate for the first time the mitochondrial genome in penile carcinoma (PeCa), aiming to evaluate heteroplasmy, mitochondrial DNA (mtDNA) mutational load and mtDNA content in Penile tumors. Using next generation sequencing (NGS), we sequenced the mitochondrial genome of 13 penile tumors and 12 non-neoplastic tissue samples, which allowed us to identify mtDNA variants and heteroplasmy. We further evaluated variant’s pathogenicity using Mutpred predictive software and calculated mtDNA content using quantitative PCR. Mitochondrial genome sequencing revealed an increase number of non-synonymous variants in the tumor tissue, along with higher frequency of heteroplasmy and mtDNA depletion in penile tumors, suggesting an increased mitochondrial instability in penile tumors. We also described a list of mitochondrial variants found in penile tumor and normal tissue, including five novel variants found in the tumoral tissue. Our results showed an increased mitochondrial genome instability in penile tumors. We also suggest that mitochondrial DNA copy number (mtDNAcn) and mtDNA variants may act together to imbalance mitochondrial function in PeCa. The better understanding of mitochondrial biology can bring new insights on mechanisms and open a new field for therapy in PeCa.  相似文献   

8.
Both the chloroplast and mitochondrial genomes are used extensively in studies of plant population genetics and systematics. In the majority of angiosperms, the chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) are each primarily transmitted maternally, but rare biparental transmission is possible. The extent to which the cpDNA and mtDNA are in linkage disequilibrium is argued to be dependent on the fidelity of co-transmission and the population structure. This study reports complete linkage disequilibrium between cpDNA and mtDNA haplotypes in 86 individuals from 17 populations of Silene vulgaris, a gynodioecious plant species. Phylogenetic analysis of cpDNA and mtDNA haplotypes within 14 individuals supports a hypothesis that the evolutionary histories of the chloroplasts and mitochondria are congruent within S. vulgaris, as might be expected if this association persists for long periods. This provides the first documentation of the evolutionary consequences of long-term associations between chloroplast and mitochondrial genomes within a species. Factors that contribute to the phylogenetic and linkage associations, as well as the potential for intergenomic hitchhiking resulting from selection on genes in one organellar genome are discussed.  相似文献   

9.
Development of Mitochondrial Gene Replacement Therapy   总被引:3,自引:0,他引:3  
Many "classic" mitochondrial diseases have been described that arise from single homoplasmic mutations in mitochondrial DNA (mtDNA). These diseases typically affect nonmitotic tissues (brain, retina, muscle), present with variable phenotypes, can appear sporadically, and are untreatable. Evolving evidence implicates mtDNA abnormalities in diseases such as Alzheimer's, Parkinson's, and type II diabetes, but specific causal mutations for these conditions remain to be defined. Understanding the mtDNA genotype-phenotype relationships and developing specific treatment for mtDNA-based diseases is hampered by inability to manipulate the mitochondrial genome. We present a novel protein transduction technology ("protofection") that allows insertion and expression of the human mitochondrial genome into mitochondria of living cells. With protofection, the mitochondrial genotype can be altered, or exogenous genes can be introduced to be expressed and either retained in mitochondria or be directed to other organelles. Protofection also delivers mtDNA in vivo, opening the way to rational development of mitochondrial gene replacement therapy of mtDNA-based diseases.  相似文献   

10.
Investigations of intraindividual sequence diversity in mtDNA are a key step in exploring the linkage between somatic mutations in mtDNA and mitochondrial genome evolution. This paper reports a directional cloning procedure enabling the isolation of multiple copies of the D-loop region of the mitochondrial genome from the fish Ameiurus nebulosus. Sequence analysis of 708 D-loop molecules revealed eight mutants, an average intraindividual mutation frequency of 1.12%. Three different types of mutations were detected but each derived from a single mutational event. By contrasting the spectrum of nucleotide variation at multiple biological levels, one can investigate the effects of spontaneous mutations on genome evolution. Such hierarchical analysis suggested shifts in the type and distribution of mtDNA (mitochondrial DNA) mutations at different biological levels, indicating the need to recognize three different rates of mtDNA sequence change from the cellular to population level.  相似文献   

11.
在各种真核生物核基因组中,存在一些由线粒体基因组转移进入核基因组中的DNA片段,这些被认为是分子化石的片段叫做线粒体核内插入序列(Numt)。由于Numt与真实的线粒体序列高度相似,因此它的存在必然会成为PCR扩增线粒体DNA的不利因素。利用已经公布的家马(Equus caballus)基因组序列(2007年9月公布,GenBank登录号为NC_009144-NC_009175)对家马Numt进行了深入分析,共发现200个可能的Numt,长度范围为29到3727bp,其中有10个的长度大于800bp。分析结果显示由于不存在线粒体控制区域的疑似Numt,因此对基于此区域的群体遗传学研究不会产生影响。本研究还发现在家马进化过程中,第1号和27号染色体更倾向于接受线粒体序列的转移。以上结果将为今后马科动物的研究提供重要的参考信息,有助于避免在线粒体DNA研究中由于Numt污染的存在而得出错误的实验结果。  相似文献   

12.
The structure and evolution of the plant mitochondrial genome may allow recurrent appearance of the same mitochondrial variants in different populations. Whether the same mitochondrial variant is distributed by migration or appears recurrently by mutation (creating homoplasy) in different populations is an important question with regard to the use of these markers for population genetic analyses. The genetic association observed between chloroplasts and mitochondria (i.e. two maternally inherited cytoplasmic genomes) may indicate whether or not homoplasy occurs in the mitochondrial genome. Four-hundred and fourteen individuals sampled in wild populations of beets from France and Spain were screened for their mitochondrial and chloroplast polymorphisms. Mitochondrial DNA (mtDNA) polymorphism was investigated with restriction fragment length polymorphism (RFLP) and chloroplast DNA (cpDNA) polymorphism was investigated with polymerase chain reaction PCR-RFLP, using universal primers for the amplification. Twenty and 13 variants for mtDNA and cpDNA were observed, respectively. Most exhibited a widespread geographical distribution. As a very strong linkage disequilibrium was estimated between mtDNA and cpDNA haplotypes, a high rate of recurrent mutation was excluded for the mitochondrial genome of beets. Identical mitochondrial variants found in populations of different regions probably occurred as a result of migration. We concluded from this study that mtDNA is a tool as valuable as cpDNA when a maternal marker is needed for population genetics analyses in beet on a large regional scale.  相似文献   

13.
Animal mitochondrial DNA has proved a valuable marker in intraspecific systematic studies. However, if nucleotide sequence heterogeneity exists at the individual level, its usefulness will be much reduced. This study demonstrates that the presence of highly conserved non-coding mitochondrial sequences in the nuclear genome of Schistocerca gregaria greatly impairs the use of mtDNA in population genetic studies. Caution is called for in other organisms; and it seems necessary to check for conserved nuclear copies of mitochondrial sequences before launching into a large scale analysis of populations using mtDNA as a genetic marker. Experimental procedures are suggested for this purpose.  相似文献   

14.
MITOMAP: a human mitochondrial genome database.   总被引:7,自引:0,他引:7       下载免费PDF全文
We have developed a comprehensive database (MITOMAP) for the human mitochondrial DNA (mtDNA), the first component of the human genome to be completely sequenced [Anderson et al. (1981) Nature 290, 457-465]. MITOMAP uses the mtDNA sequence as the unifying element for bringing together information on mitochondrial genome structure and function, pathogenic mutations and their clinical characteristics, population associated variation, and gene- gene interactions. As increasingly larger regions of the human genome are sequenced and characterized, the need for integrating such information will grow. Consequently, MITOMAP not only provides a valuable reference for the mitochondrial biologist, it may also provide a model for the development of information storage and retrieval systems for other components of the human genome.  相似文献   

15.
In analytical review is considered the possibility of the insertion of mitochondrial DNA (mtDNA) fragments into the nuclear genome of cells, exposed ionizing radiation (IR). Many studies show that integration fragment mtDNA in nuclear genome, as well as its fastening as NUMT-pseudogenes, proceed at ancient periods of the evolutions not only, but also at more late periods. The number of the investigations shows that under influence endogenous reactive oxygen species, chemical agent, UV-light and IR mtDNA is damaged with greater frequency, than nucleus DNA. Furthermore, the repair systems in mitochondria are low efficiency. In irradiated by IR cells mtDNA fragments can transition from the mitochondria to the cytoplasm. The binding of mtDNA fragment to a complex with proteins provides them the protection from nuclease destroying. Possibly, at such safe condition they and are carried to nucleus. At inductions of DNA double-strand breaks (under the action of IR and activated their reparation) mtDNA fragments may be inserted to nuclear genome. Such integration of mtDNA to nuclear genome, with shaping NUMT-pseudogenes de novo, may be proceed in irradiated cells in the course of the reparations DNA double-strand breaks by the nonhomologous end-joining pathway. These insertions of mtDNA can cardinally change the structure of nuclear genomes in area of their introduction and render the essential influence upon the realization of genetic information. Available information in literature also allows to suppose that integration mtDNA in nuclear genome can proceed and at raised genomic instability observed in cells at post radiation period. It in equal extent pertains and to malignant cells with raised by instability mitochondrial and nuclear genomes. As the most efficient agent, initiating insertion fragment mtDNA in nuclear genome, is considered ionizing radiation.  相似文献   

16.
The impressive performance of the research in mitochondrial genetics and human aging in the last decade outlines a new scenery in which the inherited variation of the mitochondrial genome (mtDNA) may play a role in rate and quality of aging. This variation in humans was initially looked at as nearly neutral, and useful just for the reconstruction of human population history. However, recent data suggest that different mtDNA molecules are qualitatively different from each other. The aim of this paper is to discuss current ideas on the relationships among mitochondrial function, mtDNA inherited variation, and aging. The main processes where the mitochondrion is involved and the importance these processes have on aging and death of individuals will be described. A possible connection between programmed death phenomena (mitoptosis, apoptosis, phenoptosis) and rate and quality of aging will be discussed. Finally, the possible role played in these processes by the mtDNA germline variation will be explored.  相似文献   

17.
We have continued to develop MITOMAP, a comprehensive database for the human mitochondrial DNA (mtDNA). MITOMAP uses the mtDNA sequence as the unifying element for bringing together information on mitochondrial genome structure and function, pathogenic mutations and their clinical characteristics, population associated variation and gene-gene interactions. As increasingly larger regions of the human genome are sequenced and characterized, the need for integrating such information will grow. Consequently, MITOMAP not only provides a valuable reference for the mitochondrial biologist, it will also provide a model for the development of comprehensive, multi-media information storage and retrieval systems for other components of the human genome. This paper is an update of the changes which have occurred to MITOMAP over the past year.  相似文献   

18.
The identification of dog hair through mtDNA analysis has become increasingly important in the last 15 years, as it can provide associative evidence connecting victims and suspects. The evidential value of an mtDNA match between dog hair and its potential donor is determined by the random match probability of the haplotype. This probability is based on the haplotype’s population frequency estimate. Consequently, implementing a population study representative of the population relevant to the forensic case is vital to the correct evaluation of the evidence. This paper reviews numerous published dog mtDNA studies and shows that many of these studies vary widely in sampling strategies and data quality. Therefore, several features influencing the representativeness of a population sample are discussed. Moreover, recommendations are provided on how to set up a dog mtDNA population study and how to decide whether or not to include published data. This review emphasizes the need for improved dog mtDNA population data for forensic purposes, including targeting the entire mitochondrial genome. In particular, the creation of a publicly available database of qualitative dog mtDNA population studies would improve the genetic analysis of dog traces in forensic casework.  相似文献   

19.
《BBA》2022,1863(5):148554
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome – mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.  相似文献   

20.
Determining the levels of human mitochondrial heteroplasmy is of utmost importance in several fields. In spite of this, there are currently few published works that have focused on this issue. In order to increase the knowledge of mitochondrial DNA (mtDNA) heteroplasmy, the main goal of this work is to investigate the frequency and the mutational spectrum of heteroplasmy in the human mtDNA genome. To address this, a set of nine primer pairs designed to avoid co-amplification of nuclear DNA (nDNA) sequences of mitochondrial origin (NUMTs) was used to amplify the mitochondrial genome in 101 individuals. The analysed individuals represent a collection with a balanced representation of genders and mtDNA haplogroup distribution, similar to that of a Western European population. The results show that the frequency of heteroplasmic individuals exceeds 61%. The frequency of point heteroplasmy is 28.7%, with a widespread distribution across the entire mtDNA. In addition, an excess of transitions in heteroplasmy were detected, suggesting that genetic drift and/or selection may be acting to reduce its frequency at population level. In fact, heteroplasmy at highly stable positions might have a greater impact on the viability of mitochondria, suggesting that purifying selection must be operating to prevent their fixation within individuals. This study analyses the frequency of heteroplasmy in a healthy population, carrying out an evolutionary analysis of the detected changes and providing a new perspective with important consequences in medical, evolutionary and forensic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号