首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Sarcoplasmic reticulum proteins have been cross-linked in situ with two reagents, the disulphide-bridged bifunctional imido ester, dimethyl-3,3'-dithiobispropionimidate dihydrochloride and the mild oxidant cupric phenanthroline. Analysis of proteins so cross-linked by electrophoresis on agarose/acrylamide gels reveals that a series of new polypeptides, up to a molecular weight of 900 000, are formed. These have molecular weights which are multiples of 100 000. Further analysis of samples by electrophoresis in a second dimensions containing a reducing agent revealed the monomeric polypeptides from which the cross-linked polypeptides were formed. With dimethyl 3,3'-dithiobispropionimidate dihydrochloride homopolymers of the Ca2+-stimulated ATPase, calsequestrin and/or calcium binding protein were formed. With cupric phenanthroline only the Ca2+-stimulated ATPase was involved in polymer formation. It has been confirmed on another gel system that these two proteins which are involved in Ca2+ binding are not cross-linked intermolecularly with this latter reagent. We conclude that the 100 000 dalton Ca2+-stimulated ATPase polypeptides are within 2 A of each other in the membrane while calsequestrin and/or calcium binding protein are within 11 A of each other. Although there appears to be no limit to the extent of cross-linking of any of these polypeptides there is not indication of heteropolymer associations between them.  相似文献   

4.
Microarrays were developed to profile the level of proteins associated with calcium regulation in sarcoplasmic reticulum (SR) isolated from porcine Longissimus muscle. The microarrays consisted of SR preparations printed onto to glass slides and probed with monoclonal antibodies to 7 target proteins. Proteins investigated included: ryanodine receptor, (RyR), dihydropyridine receptor, (DHPR), triadin (TRI), calsequestrin (CSQ), 90 kDa junctional protein (JSR90), and fast-twitch and slow-twitch SR calcium ATPases (SERCA1 and SERCA2). Signal from a fluorescently-labeled detection antibody was measured and quantitated using a slide reader. The microarray developed was also employed to profile Longissimus muscle SR proteins from halothane genotyped animals. Significant (P<0.05) reductions in levels of several proteins were found including: RyR, CSQ, TRI, DHPR and SERCA2 in SR samples from halothane positive animals. The results illustrate the potential of microarrays as a tool for profiling SR proteins and aiding investigations of calcium regulation.  相似文献   

5.
6.
Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle   总被引:7,自引:0,他引:7  
J Chevallier  R A Butow 《Biochemistry》1971,10(14):2733-2737
  相似文献   

7.
Calsequestrin (CS) is the low-affinity, high-capacity calcium binding protein segregated to the lumen of terminal cisternae (TC) of the sarcoplasmic reticulum (SR). The physiological role of CS in controlling calcium release from the SR depends on both its intrinsic properties and its localization. The mechanisms of CS targeting were investigated in skeletal muscle fibers and C2C12 myotubes, a model of SR differentiation, with four deletion mutants of epitope (hemagglutinin, HA)-tagged CS: CS-HA24NH2, CS-HA2D, CS-HA3D, and CS-HAHT, a double mutant of the NH2 terminus and domain III. As judged by immunofluorescence of transfected skeletal muscle fibers, only the double CS-HA mutant showed a homogeneous distribution at the sarcomeric I band, i.e., it did not segregate to TC. As shown by subfractionation of microsomes derived from transfected skeletal muscles, CS-HAHT was largely associated to longitudinal SR whereas CS-HA was concentrated in TC. In C2C12 myotubes, as judged by immunofluorescence, not only CS-HAHT but also CS-HA3D and CS-HA2D were not sorted to developing SR. Condensation competence, a property referable to CS oligomerization, was monitored for the several CS-HA mutants in C2C12 myoblasts, and only CS-HA3D was found able to condense. Together, the results indicate that 1) there are at least two targeting sequences at the NH2 terminus and domain III of CS, 2) SR-specific target and structural information is contained in these sequences, 3) heterologous interactions with junctional SR proteins are relevant for segregation, 4) homologous CS-CS interactions are involved in the overall targeting process, and 5) different targeting mechanisms prevail depending on the stage of SR differentiation. protein-protein interactions; oligomerization; intracellular sorting  相似文献   

8.
Membrane vesicles from sarcoplasmic reticulum of rabbit skeletal muscle were incorporated into a bilayer lipid membrane. With this system, single current fluctuation was observed in the presence of 50 mM Ba-gluconate. This channel activity was observed only in vesicles from terminal cisternae. The single channel conductance was 14.1 pS, and the channel state was almost wholly open. The open-close transition of the channel obeyed simple two-state kinetics and was voltage-independent. The ionic selectivity was also studied, and the channel showed no selectivity among Ba, Ca, Mn, and Mg. On the other hand, it was less permeable to Cs than to Ba. Based on these results, the relation of the Ca channel to excitation-contraction coupling is discussed.  相似文献   

9.
10.
The quenching of the intrinsic protein fluorescence of sarcoplasmic reticulum Ca-ATPase from the rabbit skeletal muscles by hydrophylic (NaI, CsCl) or hydrophobic (pyrene, fluorescamine) substances has been studied. CsCl (up to 1 M) has been shown not to affect the intrinsic protein fluorescence while NaI (250 mM) quenches it at 15%, pyrene (8 mkM) decreases the intrinsic fluorescence of Ca-ATPase at 35% and fluorescamine (up to 40 mkM)--at 80%. Possible mechanisms of the interaction of the quenchers with the intrinsic fluorescence of sarcoplasmic reticulum Ca-ATPase are being discussed.  相似文献   

11.
12.
Vanilloid receptor subtype 1 (VR1) was cloned as a capsaicin receptor from neuronal cells of dorsal root ganglia. VR1 was subsequently found in a few non-neuronal tissues, including skeletal muscle [Onozawa et al., Tissue distribution of capsaicin receptor in the various organs of rats, Proc. Jpn. Acad. Ser. B 76 (2000) 68-72]. We confirmed the expression of VR1 in muscle cells using the RT-PCR method and Western blot analysis. Immunostaining studies with a confocal microscope and an electron microscope indicated that VR1 was present in the sarcoplasmic reticulum (SR), a store of Ca2+. The SR releases Ca2+ to cause a contraction when a muscle is excited. However, SR still releases a small amount of Ca2+ under relaxed conditions. We found that this leakage was enhanced by capsaicin and was antagonized by capsazepine, a capsaicin blocker, indicating that leakage of Ca2+ occurs through a channel composed of VR1.  相似文献   

13.
The 95 kDa transmembrane glycoprotein triadin is believed to be an essential component of excitation-contraction coupling in the junctional sarcoplasmic reticulum of skeletal muscle fibers. It is debatable whether triadin mediates intraluminal interactions between calsequestrin and the ryanodine receptor exclusively or whether this junctional protein provides also a cytoplasmic linkage between the Ca2+-release channel and the dihydropyridine receptor. Here, we could show that native triadin exists as disulfide-linked homo-polymers of above 3000 kDa. Under non-reducing conditions, protein bands representing the alpha1-dihydropyridine receptor and calsequestrin did not show an immunodecorative overlap with the extremely high-molecular-mass triadin clusters. Following chemical crosslinking, the ryanodine receptor and triadin exhibited a similarly decreased electrophoretic mobility. However, immunoblotting of diagonal non-reducing/reducing two-dimensional gels clearly demonstrated a lack of overlap between the immunodecorated bands representing triadin, the alpha1-dihydropyridine receptor, the ryanodine receptor and calsequestrin. Thus, in native membranes triadin appears to form large self-aggregates primarily. Although triadin exists in a close neighborhood relationship to the Ca2+-release channel tetramers, it does not seem to be directly linked to the other main triad components implicated in the regulation of the excitation-contraction-relaxation cycle and Ca2+-homeostasis. This agrees with a proposed role of triadin in the maintenance of overall triad architecture.  相似文献   

14.
Calcium release from isolated heavy sarcoplasmic reticulum of rabbit skeletal muscle by several calmodulin antagonistic drugs was measured spectrophotometrically with arsenazo III and compared with the properties of the caffeine-induced calcium release. Trifluoperazine and W7 (about 500 microM) released all actively accumulated calcium (half-maximum release at 129 microM and 98 microM, respectively) in the presence 0.5 mM MgCl2 and 1 mg/ml sarcoplasmic reticulum protein; calmidazolium (100 microM) and compound 48/80 (70 micrograms/ml) released maximally 30-40% calcium, whilst bepridil (100 microM) and felodipin (50 microM) with calmodulin antagonistic strength similar to trifluoperazine (determined by inhibition of the calcium, calmodulin-dependent protein kinase of cardiac sarcoplasmic reticulum) did not cause a detectable calcium release, indicating that this drug-induced calcium release is not due to the calmodulin antagonistic properties of the tested drugs. Calcium release of trifluoperazine, W7 and compound 48/80 and that of caffeine was inhibited by similar concentrations of magnesium (half-inhibition 1.4-4.2 mM compared with 0.97 mM for caffeine) and ruthenium red (half-inhibition for trifluoperazine, W7 and compound 48/80 was 0.22 microM, 0.08 microM and 0.63 micrograms/ml, respectively, compared with 0.13 microM for caffeine), suggesting that this drug-induced calcium release occurs via the calcium-gated calcium channel of sarcoplasmic reticulum stimulated by caffeine or channels with similar properties.  相似文献   

15.
The anthraquinones, doxorubicin, mitoxantrone, daunorubicin and rubidazone are shown to be potent stimulators of Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles and to trigger transient contractions in chemically skinned psoas muscle fibers. These effects of anthraquinones are the direct consequence of their specific interaction with the [3H] ryanodine receptor complex, which constitutes the Ca2+ release channel from the triadic junction. In the presence of adenine nucleotides and physiological Mg2+ concentrations (approximately 1.0 mM), channel activation by doxorubicin and daunorubicin exhibits a sharp dependence on submicromolar Ca2+ which is accompanied by a selective, dose-dependent increase in the apparent affinity of the ryanodine binding sites for Ca2+, in a manner similar to that previously reported with caffeine. Unlike caffeine, however, anthraquinones increase [3H]ryanodine receptor occupancy to the level observed in the presence of adenine nucleotides. A strong interaction between the anthraquinone and the caffeine binding sites on the Ca2+ release channel is also observed when monitoring Ca2+ fluxes across the SR. Millimolar caffeine both inhibits anthraquinone-stimulated Ca2+ release, and reduces anthraquinone-stimulated [3H]ryanodine receptor occupancy, without changing the effective binding constant of the anthraquinone for its binding site. The degree of cooperativity for daunorubicin activation of Ca2+ release from SR also increases in the presence of caffeine. These results demonstrate that the mechanism by which anthraquinones stimulate Ca2+ release is caused by a direct interaction with the [3H]ryanodine receptor complex, and by sensitization of the Ca2+ activator site for Ca2+.  相似文献   

16.
17.
1. The basal, Ca2+-dependent and Mg2+-dependent thiophosphorylation of malignant hyperpyrexia-susceptible (MHS) porcine skeletal muscle was investigated. 2. Seven major proteins of Mr 100,000-11,000 were substrates for thiophosphorylation. 3. Sodium molybdate significantly elevated all levels of thiophosphorylation in control sarcoplasmic reticulum, but did not effect the Ca2+-dependent thiophosphorylation of MHS samples. 4. These results suggest that MHS sarcoplasmic reticulum may have altered sensitivity to protein phosphatase inhibition.  相似文献   

18.
We have isolated two proteolipids from rabbit skeletal muscle sarcoplasmic reticulum by chromatography on columns of Sepharose CL-6B and Sephadex LH-60. One, PL-II, is identical to the proteolipid previously obtained by others using organic solvent extraction. The other, PL-I, has an amino acid composition very similar to those of proteolipids we previously isolated from canine cardiac SR and lamb kidney (Na,K)-ATPase.  相似文献   

19.
To clarify the biological role of phosphoinositides including inositol trisphosphate (IP3) in the skeletal muscle, we examined the Ca-releasing action on the heavy fraction of sarcoplasmic reticulum (HFSR) from bullfrog skeletal muscle of IP3, phosphatidylinositol monophosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2), and glycerophosphoinositol 4,5-bisphosphate (GPIP2). Only PIP2 caused dose-dependent Ca release. IP3 (up to 55 microM), PIP (up to 37 microM), and GPIP2 (up to 33 microM) were ineffective. The PIP2-induced Ca release is due to the direct action of PIP2, but not its metabolite(s). The properties of the PIP2-induced Ca release are unique and cannot be accounted for by the Ca release mechanisms already reported, such as Ca2+-induced, ionic substitution-induced, or IP3-induced Ca release. The rate of the PIP2-induced Ca release, however, is so slow that it may have no physiological relevance unless stimulating factors or agents exist.  相似文献   

20.
Comparative aspects of cardiac and skeletal muscle sarcoplasmic reticulum.   总被引:1,自引:0,他引:1  
While differing in numerous physiological and biochemical parameters, mammalian cardiac and skeletal muscles exhibit many common ultrastructural characteristics. General subcellular organization is similar with longitudinal disposition and organization of the myofibrils as well as subcellular organelles such as mitochondria, sarcoplasmic reticulum and transverse tubules. Significant differences are more readily discerned in terms of degree, not only with respect to relative amounts of various organelles, but also in regard to membrane composition. It is these macromolecular variations in membrane components which may, at least in part, provide the basis for differences in overall functional characteristics in the muscles.In cardiac, as well as skeletal muscle, the concentration of Ca2+ ions at specific intracellular sites regulates the contractile state of the muscle. The differences in mechanism and sources of Ca2+ for contraction in cardiac and skeletal muscle are but a few of the unsolved areas which are now being addressed. We shall focus primarily on research advances involving cardiac and skeletal SR emphasizing the contrasting features related to their functional roles in control of contraction and metabolic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号