首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary A ferromagnetic modifier was prepared by reacting ferrous(Fe2+)- and ferric(Fe3+)-ions with polyethylene glycol having two carboxyl groups (MW:2000) at pH 8.0–8.5. Lipase fromPseudomonas fragi 22–39B was coupled with the modifier using water-soluble carbodiimide. The modified lipase, which was dispersed into buffered solutions in the size range of 30–70 nm, exerted the hydrolytic activity of 8.0 U/mg. In a magnetic field of 250 Oe, the ferromagnetic-modified lipase was readily recovered from the colloidal solution.  相似文献   

2.
Bio-imprinting has been introduced as a technique of interfacial activation of lipase for anhydrous reaction applications. In this study, air–water (bubble) interfaces were compared to amphiphile and substrate interfaces in microbial lipase bio-imprinting. Results indicated that the bubble interface is equally effective on lipase interesterification activity and produces a 4–4.5-fold increase compared with the enzymes as supplied. Interesterification activity can be explained in terms of effects upon the accessibility of the lipase active site. This technique provides an easier, cheaper and product-friendly way of lipase bio-imprinting.  相似文献   

3.
Mucor circinelloides IBT-83 mycelium that exhibits both lipolytic (AL) and chitosanolytic (ACH) activities was immobilized into polyurethane foam in a 30?L laboratory fermenter. The process of immobilization was investigated in terms of the carrier porosity, its type, amount, and shape, location inside the fermenter, mixing, and aeration parameters during the culture, as well as downstream processing operations. The selected conditions allowed for immobilization of approximately 7?g of defatted and dried mycelium in 1?g of carrier, i.e., seven times more than achievable in 1?L shake-flasks. Enzymatic preparation obtained by this method exhibited both the chitosanolytic (ACH 432.5?±?6.8?unit/g) and lipolytic (AL 150.0?±?9.3?U/g) activities. The immobilized preparation was successfully used in chitosan hydrolysis to produce chitooligosaccharides and low molecular weight chitosan, as well as in waste fats degradation and in esters synthesis in nonaqueous media. It was found that the half-life of immobilized preparations stored at room temperature is on average of 200 days.  相似文献   

4.
Kluyveromyces marxianus was grown in submerged culture in a complex medium with several potential inducers of lipolytic activity (triacylglycerols, fatty acids). The highest extracellular lipolytic enzyme production (about 80 U ml–1 in 3 d) was obtained when the medium was supplemented with 2 g urea l–1 plus 5 g tributyrin l–1. Addition of surfactants (1 g l–1) did not improve production. The lipase had a high thermal stability in aqueous solution (73% residual activity after 9 d at 50 °C, 16 min half-life time at 100 °C). It was also stable at acidic pH and showed good tolerance to organic solvents (70% residual activity after 2 d in n-hexane of cyclohexane).  相似文献   

5.
Post-nuclear supernatant (PNS) prepared from homogenates of heparin-pretreated adult rat hearts contains an acid and a neutral lipase activity. Both lipases preferentially hydrolyze endogenous PNS triglycerides (TG). PNS derived from newborn rat hearts, which is depleted of TG, lacks the neutral lipase activity. After dietary trierucate (TE)-induced cardiac lipidosis, the neutral lipase activity in PNS is markedly enhanced. TG-accumulation can also be induced upon in vitro perfusion of rat hearts with Intralipid® and rat serum. Intralipid® -induced lipidosis is accompanied by an increased neutral lipase activity, which can be abolished when protein synthesis is inhibited by cycloheximide. Depletion of cardiac TG, during long-term perfusion, leads to a decrease in PNS neutral lipase activity. When PNS was prepared from hearts 5 h after cycloheximide pretreatment of rats the neutral lipase activities were reduced with a half-life of 6 h. Our data suggest that TG-mediated induction of neutral lipase synthesis is responsible for the increased rate of lipolysis observed during myocardial lipidosis.  相似文献   

6.
The evaluation of soil lipase activity as a tool to monitor the decontamination of a freshly oil-polluted soil was tested in a laboratory study. An arable soil was experimentally contaminated with diesel oil at 5 mg hydrocarbons g–1 soil dry weight and incubated with and without fertilization (N-P-K) for 116 days at 20°C. Lipase activity and counts of oil-degrading microorganisms were measured at regular time intervals, and the correlations with the levels of hydrocarbon concentrations in soil were investigated. The residual soil hydrocarbon concentration correlated significantly negatively with soil lipase activity and with the number of oil-degrading microorganisms, independent of fertilization. The induction of soil lipase activity is a valuable indicator of oil biodegradation in naturally attenuated (unfertilized) and bioremediated (fertilized) soils.  相似文献   

7.
Diacylglycerol lipase α is the key enzyme in the formation of the most prevalent endocannabinoid, 2-arachidonoylglycerol in the brain. In this study we identified the catalytic triad of diacylglycerol lipase α, consisting of serine 472, aspartate 524 and histidine 650. A truncated version of diacylglycerol lipase α, spanning residues 1-687 retains complete catalytic activity suggesting that the C-terminal domain is not required for catalysis. We also report the discovery and the characterization of fluorogenic and chromogenic substrates for diacylglycerol lipase α. Assays performed with these substrates demonstrate equipotent inhibition of diacylglycerol lipase α by tetrahydrolipastatin and RHC-20867 as compared to reactions performed with the native diacylglycerol substrate. Thus, confirming the utility of assays using these substrates for identification and kinetic characterization of inhibitors from pharmaceutical collections.  相似文献   

8.
Summary Lipase from Pseudomonas cepacia was modified with 2,4-bis[O-methoxypoly(ethylene glycol)]-6-chloro-s-triazine(activated PEG2) to form PEG-lipase. The PEG-lipase, soluble and active in organic solvents, catalyzes asymmetric alcoholysis of racemic -decalactone in alcohols to form (R)-5-hydroxydecanoic acid alkyl esters. The yield was 69% with 83% enantiomeric excess after 3 hr-reaction in n-decanol at 50°C. The advantage of this reaction is that the alcoholysis proceeds efficiently in straight hydrophobic substrates without any organic solvents.  相似文献   

9.
Lipoprotein lipases from a variety of sources have been shown previously to bind to heparin and some related polysaccharides. For the present studies lipoprotein lipase purified from bovine milk was used. 1. In batch experiments binding of the enzyme activity to heparin-Sepharose occurred relatively slowly, so that 30min was required for the system to come to near-equilibrium. In contrast, release of the enzyme activity from heparin-Sepharose by addition of salt to the liquid phase occurred rapidly. 2. Some binding was observed also with unsubstituted Sepharose, but this binding had a low capacity compared with that observed with heparin-Sepharose. High salt concentrations, heparin or deoxycholate decreased the binding to unsubstituted Sepharose. These factors also increase the solubility of the enzyme, which is low. 3. Addition of heparin to the liquid phase caused a concentration-dependent release of enzyme activity from the gel. These results suggested that the binding of the enzyme to heparin-Sepharose was mainly through interaction with heparin. 4. The enzyme activity was also quantitatively displaced to the liquid phase at increased concentrations of salt. Among the positive ions tested the following order of effectiveness was noted: Cs(+) approximately K(+)>Na(+)>Li(+); and among the negative the following: SCN(-)>I(-)> NO(3) (-)>Br(-) approximately Cl(-). The differences were quite large. Thus addition of 0.16m-KSCN (in addition to the 0.32m-NaCl originally present) displaced one-half of the enzyme activity to the supernatant, whereas 0.8m-LiCl only displaced one-quarter. 5. The distribution of heparin in the gel also profoundly influenced the binding. Two series of gels were studied. One series was made by mixing heparin-Sepharose with unsubstituted Sepharose. Results obtained with these gels were those expected from a series of decreasing volumes of heparin-Sepharose. In contrast, a series of heparin-Sepharoses made with different degrees of substitution gave quite different results. With these gels the amount of enzyme activity bound per amount of heparin increased markedly, whereas the salt concentration needed to displace the enzyme activity from the gel decreased markedly with decreased concentration of heparin in the gel. 6. On stepwise elution of small columns of heparin-Sepharose the enzyme activity was eluted over a remarkably wide range of salt concentrations. When enzyme eluted at one salt concentration was re-applied, it gave the same elution profile as enzyme previously eluted at other salt concentrations or the entire enzyme preparation. These and other results suggested that, whereas the enzyme preparation was rather homogeneous in its binding to heparin, the heparin preparation was polydisperse in binding of lipoprotein lipase.  相似文献   

10.
Hormone-sensitive lipase (HSL) is thought to contribute importantly to the mobilization of fatty acids from the triacylglycerols (TAGs) stored in adipocytes, providing the main source of energy in mammals. To investigate the HSL substrate specificity more closely, we systematically assessed the lipolytic activity of recombinant human HSL on solutions and emulsions of various vinyl esters and TAG substrates, using the pH-stat assay technique. Recombinant human HSL activity on solutions of partly soluble vinyl esters or TAG was found to range from 35 to 90% of the maximum activity measured with the same substrates in the emulsified state. The possible existence of a lipid-water interface due to the formation of small aggregates of vinyl esters or TAG in solution may account for the HSL activity observed below the solubility limit of the substrate. Recombinant human HSL also hydrolyzes insoluble medium- and long-chain acylglycerols such as trioctanoylglycerol, dioleoylglycerol, and olive oil, and can therefore be classified as a true lipase. Preincubation of the recombinant HSL with a serine esterase inhibitor such as diethyl p-nitrophenyl phosphate in 1:100 molar excess leads to complete HSL inhibition within 15 min. This result indicates that the catalytic serine of HSL is highly reactive and that it is readily accessible. Similar behavior was also observed with lipases with no lid domain covering their active site, or with a deletion in the lid domain. The 3-D structure of HSL, which still remains to be determined, may therefore lack the lid domain known to exist in various other lipases.  相似文献   

11.
Bioimprinting and sol–gel encapsulation of lipases by silane precursors are efficient methods of enhancing lipase performance in non-aqueous medium. The correlation between bioimprinting, the alkyl-chain length of silane precursors, and the catalytic activity of gel-encapsulated lipase was investigated using a series of silane precursors: methyltrimethoxysilane (MTMS), vinyltrimethoxysilane (VTMOS), vinyltriethoxysilane (VTEOS), and n-octyltrimethoxysilane (OTMOS). The optimal parameters for lipase immobilization were also determined. Both bioimprinting and increasing the chain-length of alkyl groups, apparently by increasing hydrophobicity, significantly improved the specific activity and the total activity of the immobilized lipase. Compared to a non-imprinted MTMS/TMOS gel, the specific activity of an imprinted OTMOS/TMOS gel improved 14.4-fold, and the total activity improved 6.8-fold. Nitrogen adsorption–desorption assays and gel matrix surface characterization showed that the bioimprinting molecule and the hydrophobic alkyl groups of silane triggered lipase to change from the closed to the open conformation, and contributed to creating sol–gel matrices that were more porous and with less mass transfer resistance structure, apparently improving the activity of encapsulated lipase.  相似文献   

12.
Ethanol extracts, dried powders and fibres (total and soluble fibre) of the tropical red algae Kappaphycus alvarezii, Kappaphycus striatus and Eucheuma denticulatum were analysed for their effect on lipase and α-amylase activity using turbidimetric method and dinitrosalicylic acid (DNS) assay, respectively. The nutrient composition analyses were determined using standard methods. The ethanol extract of dried K. striatus (Ks-III) showed the highest reduction in lipase activity with 92 % inhibition followed by seaweed powders (K. alvarezii (Ka-III), K. striatus (Ks-III) and E. denticulatum (Ed-III)) with average inhibition of 60 %. Soluble fibres of K. alvarezii (Ka-V) and E. denticulatum (Ed-V) showed significant inhibition with 60 and 57 % reduction, respectively. Only the ethanol extract of fresh E. denticulatum (Ed-I) showed 88 % inhibition of α-amylase. Nutritional component analyses showed that all three seaweeds are low in crude fat, suggesting the possible use of seaweed as a dietary supplement and for potential weight and glycaemia management.  相似文献   

13.
TNF-α potently stimulates basal lipolysis in adipocytes, which may contribute to hyperlipidemia and peripheral insulin resistance in obesity. Recent studies show that adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) act sequentially in catalyzing the first two steps of adipose lipolysis in response to β-adrenergic stimulation. Here, we sought to determine their functional roles in TNF-α-induced lipolysis. Silencing of ATGL expression in adipocytes almost completely abolished basal and TNF-α-induced glycerol release. In comparison, the glycerol release under the same conditions was only partially decreased upon reduction in expression of either HSL or the ATGL coactivator CGI-58. Interestingly, overexpression of ATGL restored the lipolytic rates in cells with silenced HSL or CGI-58, indicating a predominant role for ATGL. While expression of ATGL, HSL and CGI-58 remains mostly unaffected, TNF-α treatment caused a rapid abrogation of the ATGL inhibitory protein G0S2. TNF-α drastically decreased the level of G0S2 mRNA, and the level of G0S2 protein could be maintained by inhibiting proteasomal protein degradation using MG-132. Furthermore, coexpression of G0S2 was able to significantly decrease TNF-α-stimulated lipolysis mediated by overexpressed ATGL or CGI-58. We propose that the early reduction in G0S2 content is permissive for TNF-α-induced lipolysis.  相似文献   

14.
Extracts ofAscophyllum nodosum, Fucus serratus, F. vesiculosus andPelvetia canaliculata contain inhibitors of α-amylase, lipase and trypsin. The inhibitors were isolated and identified by1H NMR spectroscopy as polyphenols which have apparent molecular weights in the range from 30 000 to 100 000 daltons, as determined by ultra-filtration with Amicon membranes. These polyphenols account for the whole of the inhibitory activity in crude algal extracts. The compounds inhibit α-amylase and trypsin in an apparently non-competitive manner, when preincubated with the enzymes, and the inhibition is directly proportional to the concentration of the inhibitor. Starch protects α-amylase when added to the enzyme together with the inhibitors. Under this condition the effectiveness of the inhibitors is reduced ten-fold.  相似文献   

15.
The mechanism and potential energy surface for the Baeyer-Villiger oxidation of acetone with hydrogen peroxide catalyzed by a Ser105-Ala mutant of Candida antarctica Lipase B has been determined using ab initio and density functional theories. Initial substrate binding has been studied using an automated docking procedure and molecular dynamics simulations. Substrates were found to bind to the active site of the mutant. The activation energy for the first step of the reaction, the nucleophilic attack of hydrogen peroxide on the carbonyl carbon of hydrogen peroxide, was calculated to be 4.4 kcal x mol(-1) at the B3LYP/6-31+G* level. The second step, involving the migration of the alkyl group, was found to be the rate-determining step with a computed activation energy of 19.9 kcal x mol(-1) relative the reactant complex. Both steps were found to be lowered considerably in the reaction catalyzed by the mutated lipase, compared to the uncatalyzed reaction. The first step was lowered by 36.0 kcal x mol(-1) and the second step by 19.5 kcal x mol(-1). The second step of the reaction, the rearrangement step, has a high barrier of 27.7 kcal x mol(-1) relative to the Criegee intermediate. This could lead to an accumulation of the intermediate. It is not clear whether this result is an artifact of the computational procedure, or an indication that further mutations of the active site are required. Figure Second TS (18TS) in the Baeyer-Villiger oxidation in a mutant of CALB. Distances in A  相似文献   

16.
Immobilization of Saccharomyces cerevisiae lipase by physical adsorption on Mg–Al hydrotalcite with a Mg/Al molar ratio of 4.0 led to a markedly improved performance of the enzyme. The immobilized lipase retained activity over wider ranges of temperature and pH than those of the free lipase. The immobilized lipase retained more than 95% relative activity at 50 °C, while the free lipase retained about 88%. The kinetic constants of the immobilized and free lipases were also determined. The apparent activation energies (Ea) of the free and immobilized lipases were estimated to be 6.96 and 2.42 kJ mol?1, while the apparent inactivation energies (Ed) of free and immobilized lipases were 6.51 and 6.27 kJ mol?1, respectively. So the stability of the immobilized lipase was higher than that of free lipase. The water content of the oil must be kept below 2.0 wt% and free fatty acid content of the oil must be kept below 3.5 mg KOH g [oil]?1 in order to get the best conversion. This immobilization method was found to be satisfactory to produce a stable and functioning biocatalyst which could maintain high reactivity for repeating 10 batches with ester conversion above 81.3%.  相似文献   

17.
A new endoperoxysesquiterpene lactone, 10α-hydroxy-1α,4α-endoperoxy-guaia-2-en-12,6α-olide (1), together with a flavanone, eriodictyol (2), and two flavone glycosides, acacetin-7-O-β-d-glucopyranoside (3) and acacetin-7-O-α-l-rhamopyranoside (4), were isolated from the methanol extract of Chrysanthemum morifolium flowers by a bioassay-guided fractionation. Compound 1 showed strong inhibitory effects against α-glucosidase and lipase activities, with IC50 values of 229.3 and 161.0 μM, respectively. The flavone glycosides 3 and 4 inhibited both α-glucosidase and α-amylase, while flavanone 2 was only effective against α-amylase.  相似文献   

18.
Transesterification activity and the industrial potential of a novel lipase prepared from Acinetobacter ventiatus RAG-1 were evaluated. Purified lipase samples were dialyzed against pH 9.0 buffer in a single optimization step prior to lyophilization. The enzyme and organic phase were pre-equilibrated (separately) to the same thermodynamic water activities (a w) ranging from a w 0.33 to 0.97. Production of 1-octyl butyrate by lipase-catalyzed transesterification of vinyl butyrate with 1-octanol in hexane was monitored by gas chromatography. Production of 1-octyl butyrate and initial rate of reaction depended on water activity. Product synthesis and rate of transesterification increased sharply with increase from a w 0.33 to 0.55. Highest product concentration (218 mM) and rate of reaction (18.7 μmol h−1 · 10 μg protein) were measured at a w 0.86. Transesterification activity in hexane represented 32% of comparable hydrolytic activity in aqueous buffer.  相似文献   

19.
The immobilization of lipases within sol–gel derived silica, using multi-walled carbon nanotubes (MWNTs) as additives in order to protect the inactivation of lipase during sol–gel process and to enhance the stability of lipase, was investigated. Three sol–gel immobilized lipases (Candida rugosa, Candida antarctica type B, Thermomyces lanuginosus) with 0.33% (w/w) MWNT showed much higher activities than lipase immobilized without MWNT. The influence of MWNT content and MWNT shortened by acid treatment in the sol–gel process on the activity and stability of immobilized C. rugosa lipase was also studied. In hydrolysis reaction, immobilized lipase containing 1.1% pristine MWNT showed 7 times higher activity than lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT showed 10 times higher activity in esterification reaction, compared with lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT retained 96% of initial activity after 5 times reuse, while the lipase immobilized without MWNT was fully inactivated under the same condition.  相似文献   

20.

Background

Monoacylglycerol lipase (MAGL), a critical lipolytic enzyme, has emerged as a key regulator of tumor progression, yet its biological function and clinical significance in hepatocellular carcinoma (HCC) is still unknown.

Methods

In this study, we used a tissue microarray containing samples from 170 HCC patients to evaluate the expression of MAGL and its correlation with other clinicopathologic characteristics. In addition, we investigated the regulating effects of MAGL on various HCC lines. Finally, we identified the NF-κB signaling pathway participated in MAGL-mediated epithelial-mesenchymal transition (EMT) using HCC cell lines with different metastatic potentials.

Results

The expression of MAGL was significantly higher in HCC tumors than in matched peritumor tissues. Specifically, high MAGL expression was found in tumors with larger tumor size, microvascular invasion, poor differentiation, or advanced TNM stage. In addition, the clinical prognosis for the MAGLhigh group was markedly poorer than that for the MAGLlow group in the 1-, 3-, and 5-year overall survival times and recurrence rates of HCC patients. MAGL expression was an independent prognostic factor for both survival and recurrence after curative resection. Furthermore, the upregulation of MAGL in HCC cells promoted cell growth and invasiveness abilities, and accompanied by EMT. In contrast, downregulation of MAGL obviously inhibited these characteristics. Moreover, further investigations verified that MAGL facilitates HCC progression via NF-κB-mediated EMT process.

Conclusions

Our findings demonstrate MAGL could promote HCC progression by the induction of EMT and suggest a potential therapeutic target, as well as a biomarker for prognosis, in patients with HCC.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号