首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The mRNA surveillance system is known to rapidly degrade aberrant mRNAs that contain premature termination codons in a process referred to as nonsense-mediated decay. A second class of aberrant mRNAs are those wherein the 3' UTR is abnormally extended due to a mutation in the polyadenylation site. We provide several observations that these abnormally 3'-extended mRNAs are degraded by the same machinery that degrades mRNAs with premature nonsense codons. First, the decay of the 3'-extended mRNAs is dependent on the same decapping enzyme and 5'-to-3' exonuclease. Second, the decay is also dependent on the proteins encoded by the UPF1, UPF2, and UPF3 genes, which are known to be specifically required for the rapid decay of mRNAs containing nonsense codons. Third, the ability of an extended 3' UTR to trigger decay is prevented by stabilizing sequences within the PGK1 coding region that are known to protect mRNAs from the rapid decay induced by premature nonsense codons. These results indicate that the mRNA surveillance system plays a role in degrading abnormally extended 3' UTRs. Based on these results, we propose a model in which the mRNA surveillance machinery degrades aberrant mRNAs due to the absence of the proper spatial arrangement of the translation-termination codon with respect to the 3' UTR element as defined by the utilization of a polyadenylation site.  相似文献   

6.
7.
Computational modeling of eukaryotic mRNA turnover   总被引:8,自引:2,他引:6       下载免费PDF全文
Cao D  Parker R 《RNA (New York, N.Y.)》2001,7(9):1192-1212
  相似文献   

8.
9.
The Puf family of RNA-binding proteins regulates mRNA translation and decay via interactions with 3' untranslated regions (3' UTRs) of target mRNAs. In yeast, Puf3p binds the 3' UTR of COX17 mRNA and promotes rapid deadenylation and decay. We have investigated the sequences required for Puf3p recruitment to this 3' UTR and have identified two separate binding sites. These sites are specific for Puf3p, as they cannot bind another Puf protein, Puf5p. Both sites use a conserved UGUANAUA sequence, whereas one site contains additional sequences that enhance binding affinity. In vivo, presence of either site partially stimulates COX17 mRNA decay, but full decay regulation requires the presence of both sites. No other sequences outside the 3' UTR are required to mediate this decay regulation. The Puf repeat domain of Puf3p is sufficient not only for in vitro binding to the 3' UTR, but also in vivo stimulation of COX17 mRNA decay. These experiments indicate that the essential residues involved in mRNA decay regulation are wholly contained within this RNA-binding domain.  相似文献   

10.
Kshirsagar M  Parker R 《Genetics》2004,166(2):729-739
The major pathway of mRNA decay in yeast initiates with deadenylation, followed by mRNA decapping and 5'-3' exonuclease digestion. An in silico approach was used to identify new proteins involved in the mRNA decay pathway. One such protein, Edc3p, was identified as a conserved protein of unknown function having extensive two-hybrid interactions with several proteins involved in mRNA decapping and 5'-3' degradation including Dcp1p, Dcp2p, Dhh1p, Lsm1p, and the 5'-3' exonuclease, Xrn1p. We show that Edc3p can stimulate mRNA decapping of both unstable and stable mRNAs in yeast when the decapping enzyme is compromised by temperature-sensitive alleles of either the DCP1 or the DCP2 genes. In these cases, deletion of EDC3 caused a synergistic mRNA-decapping defect at the permissive temperatures. The edc3Delta had no effect when combined with the lsm1Delta, dhh1Delta, or pat1Delta mutations, which appear to affect an early step in the decapping pathway. This suggests that Edc3p specifically affects the function of the decapping enzyme per se. Consistent with a functional role in decapping, GFP-tagged Edc3p localizes to cytoplasmic foci involved in mRNA decapping referred to as P-bodies. These results identify Edc3p as a new protein involved in the decapping reaction.  相似文献   

11.
12.
The 3' noncoding region (NCR) AU-rich element (ARE) selectively confers rapid degradation on many mRNAs via a process requiring translation of the message. The role of cotranslation in destabilization of ARE mRNAs was examined by insertion of translation-blocking stable secondary structure at different sites in test mRNAs containing either the granulocyte-macrophage colony-stimulating factor (GM-CSF) ARE or a control sequence. A strong (-80 kcal/mol [1 kcal = 4.184 kJ]) but not a moderate (-30 kcal/mol) secondary structure prevented destabilization of mRNAs when inserted at any position upstream of the ARE, including in the 3' NCR. Surprisingly, a strong secondary structure did not block rapid mRNA decay when placed immediately downstream of the ARE. Studies are also presented showing that the turnover of mRNAs containing control or ARE sequences is not altered by insertion of long (1,000-nucleotide) intervening segments between the stop codon and the ARE or between the ARE and poly(A) tail. Characterization of ARE-containing mRNAs in polyadenylated and whole cytoplasmic RNA fractions failed to find evidence for decay intermediates degraded to the site of strong secondary structure from either the 5' or 3' end. From these and other data presented, this study demonstrates that complete translation of the coding region is essential for activation of rapid mRNA decay controlled by the GM-CSF ARE and that the structure of the 3' NCR can strongly influence activation. The results are consistent with activation of ARE-mediated decay by possible entry of translation-linked decay factors into the 3' NCR or translation-coupled changes in 3' NCR ribonucleoprotein structure or composition.  相似文献   

13.
D Zuk  A Jacobson 《The EMBO journal》1998,17(10):2914-2925
Most factors known to function in mRNA turnover are not essential for cell viability. To identify essential factors, approximately 4000 temperature-sensitive yeast strains were screened for an increase in the level of the unstable CYH2 pre-mRNA. At the non-permissive temperature, five mutants exhibited decreased decay rates of the CYH2 pre-mRNA and mRNA, and the STE2, URA5 and PAB1 mRNAs. Of these, the mutant ts1159 had the most extensive phenotype. Expression of the TIF51A gene (encoding eIF-5A) complemented the temperature-sensitive growth and mRNA decay phenotypes of ts1159. The tif51A allele was rescued from these cells and shown to encode a serine to proline change within a predicted alpha-helical segment of the protein. ts1159 also exhibited an approximately 30% decrease in protein synthesis at the restrictive temperature. Measurement of amino acid incorporation in wild-type cells incubated with increasing amounts of cycloheximide demonstrated that a decrease in protein synthesis of this magnitude could not account for the full extent of the mRNA decay defects observed in ts1159. Interestingly, the ts1159 cells accumulated uncapped mRNAs at the non-permissive temperature. These results suggest that eIF-5A plays a role in mRNA turnover, perhaps acting downstream of decapping.  相似文献   

14.
15.
In both prokaryotes and eukaryotes, nonsense mutations in a gene can enhance the decay rate or reduce the abundance of the mRNA transcribed from that gene, and we call this process nonsense-mediated mRNA decay. We have been investigating the cis-acting sequences involved in this decay pathway. Previous experiments have demonstrated that, in addition to a nonsense codon, specific sequences 3' of a nonsense mutation, which have been defined as downstream elements, are required for mRNA destabilization. The results presented here identify a sequence motif (TGYYGATGYYYYY, where Y stands for either T or C) that can predict regions in genes that, when positioned 3' of a nonsense codon, promote rapid decay of its mRNA. Sequences harboring two copies of the motif from five regions in the PGK1, ADE3, and HIS4 genes were able to function as downstream elements. In addition, four copies of this motif can function as an independent downstream element. The sequences flanking the motif played a more significant role in modulating its activity when fewer copies of the sequence motif were present. Our results indicate the sequences 5' of the motif can modulate its activity by maintaining a certain distance between the sequence motif and the termination codon. We also suggest that the sequences 3' of the motif modulate the activity of the downstream element by forming RNA secondary structures. Consistent with this view, a stem-loop structure positioned 3' of the sequence motif can enhance the activity of the downstream element. This sequence motif is one of the few elements that have been identified that can predict regions in genes that can be involved in mRNA turnover. The role of these sequences in mRNA decay is discussed.  相似文献   

16.
AU binding proteins recruit the exosome to degrade ARE-containing mRNAs.   总被引:45,自引:0,他引:45  
Inherently unstable mammalian mRNAs contain AU-rich elements (AREs) within their 3' untranslated regions. Although found 15 years ago, the mechanism by which AREs dictate rapid mRNA decay is not clear. In yeast, 3'-to-5' mRNA degradation is mediated by the exosome, a multisubunit particle. We have purified and characterized the human exosome by mass spectrometry and found its composition to be similar to its yeast counterpart. Using a cell-free RNA decay system, we demonstrate that the mammalian exosome is required for rapid degradation of ARE-containing RNAs but not for poly(A) shortening. The mammalian exosome does not recognize ARE-containing RNAs on its own. ARE recognition requires certain ARE binding proteins that can interact with the exosome and recruit it to unstable RNAs, thereby promoting their rapid degradation.  相似文献   

17.
18.
As an approach to understanding the structures and mechanisms which determine mRNA decay rates, we have cloned and begun to characterize cDNAs which encode mRNAs representative of the stability extremes in the poly(A)+ RNA population of Dictyostelium discoideum amoebae. The cDNA clones were identified in a screening procedure which was based on the occurrence of poly(A) shortening during mRNA aging. mRNA half-lives were determined by hybridization of poly(A)+ RNA, isolated from cells labeled in a 32PO4 pulse-chase, to dots of excess cloned DNA. Individual mRNAs decayed with unique first-order decay rates ranging from 0.9 to 9.6 h, indicating that the complex decay kinetics of total poly(A)+ RNA in D. discoideum amoebae reflect the sum of the decay rates of individual mRNAs. Using specific probes derived from these cDNA clones, we have compared the sizes, extents of ribosome loading, and poly(A) tail lengths of stable, moderately stable, and unstable mRNAs. We found (i) no correlation between mRNA size and decay rate; (ii) no significant difference in the number of ribosomes per unit length of stable versus unstable mRNAs, and (iii) a general inverse relationship between mRNA decay rates and poly(A) tail lengths. Collectively, these observations indicate that mRNA decay in D. discoideum amoebae cannot be explained in terms of random nucleolytic events. The possibility that specific 3'-structural determinants can confer mRNA instability is suggested by a comparison of the labeling and turnover kinetics of different actin mRNAs. A correlation was observed between the steady-state percentage of a given mRNA found in polysomes and its degree of instability; i.e., unstable mRNAs were more efficiently recruited into polysomes than stable mRNAs. Since stable mRNAs are, on average, "older" than unstable mRNAs, this correlation may reflect a translational role for mRNA modifications that change in a time-dependent manner. Our previous studies have demonstrated both a time-dependent shortening and a possible translational role for the 3' poly(A) tracts of mRNA. We suggest, therefore, that the observed differences in the translational efficiency of stable and unstable mRNAs may, in part, be attributable to differences in steady-state poly(A) tail lengths.  相似文献   

19.
To identify trans-acting factors involved in mRNA decay in the yeast Saccharomyces cerevisiae, we have begun to characterize conditional lethal mutants that affect mRNA steady-state levels. A screen of a collection of temperature-sensitive mutants identified ts352, a mutant that accumulated moderately stable and unstable mRNAs after a shift from 23 to 37 degrees C (M. Aebi, G. Kirchner, J.-Y. Chen, U. Vijayraghavan, A. Jacobson, N.C. Martin, and J. Abelson, J. Biol. Chem. 265:16216-16220, 1990). ts352 has a defect in the CCA1 gene, which codes for tRNA nucleotidyltransferase, the enzyme that adds 3' CCA termini to tRNAs (Aebi et al., J. Biol. Chem., 1990). In a shift to the nonpermissive temperature, ts352 (cca1-1) cells rapidly cease protein synthesis, reduce the rates of degradation of the CDC4, TCM1, and PAB1 mRNAs three- to fivefold, and increase the relative number of ribosomes associated with mRNAs and the overall size of polysomes. These results were analogous to those observed for cycloheximide-treated cells and are generally consistent with models that invoke a role for translational elongation in the process of mRNA turnover.  相似文献   

20.
We report here the molecular cloning and sequence analysis of DNAs complementary to mRNAs for myosin alkali light chain of chicken embryo and adult leg skeletal muscle. pSMA2-1 contained an 818 base-pair insert that includes the entire coding region and 5' and 3' untranslated regions of A2 mRNA. pSMA1-1 contained a 848 base-pair insert that included the 3' untranslated region and almost all of the coding region except for the N-terminal 13 amino acid residues of the A1 light chain. The 741 nucleotide sequences of A1 and A2 mRNAs corresponding to C-terminal 141 amino acid residues and 3' untranslated regions were identical. The 5' terminal nucleotide sequences corresponding to N-terminal 35 amino acid residues of A1 chain were quite different from the sequences corresponding to N-terminal 8 amino acid residues and of the 5' untranslated region of A2 mRNA. These findings are discussed in relation to the structures of the genes for A1 and A2 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号