首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 238 毫秒
1.
2.
3.
4.
A common feature of gene expression in all retroviruses is that unspliced, intron-containing RNA is exported to the cytoplasm despite the fact that cellular RNAs which contain introns are usually restricted to the nucleus. In complex retroviruses, the export of intron-containing RNA is mediated by specific viral regulatory proteins (e.g., human immunodeficiency virus type 1 [HIV-1] Rev) that bind to elements in the viral RNA. However, simpler retroviruses do not encode such regulatory proteins. Here we show that the genome of the simpler retrovirus Mason-Pfizer monkey virus (MPMV) contains an element that serves as an autonomous nuclear export signal for intron-containing RNA. This element is essential for MPMV replication; however, its function can be complemented by HIV-1 Rev and the Rev-responsive element. The element can also facilitate the export of cellular intron-containing RNA. These results suggest that the MPMV element mimics cellular RNA transport signals and mediates RNA export through interaction with endogenous cellular factors.  相似文献   

5.
6.
RNA packaging signals (psi) from the 5' ends of murine and avian retroviral genomes have previously been shown to direct encapsidation of heterologous mRNA into the retroviral virion. The avian 5' packaging region has now been further characterized, and we have defined a 270-nucleotide sequence, A psi, which is sufficient to direct packaging of heterologous RNA. Identification of the A psi sequence suggests that several retroviral cis-acting sequences contained in psi+ (the primer binding site, the putative dimer linkage sequence, and the splice donor site) are dispensable for specific RNA encapsidation. Subgenomic env mRNA is not efficiently encapsidated into particles, even though the A psi sequence is present in this RNA. In contrast, spliced heterologous psi-containing RNA is packaged into virions as efficiently as unspliced species; thus splicing per se is not responsible for the failure of env mRNA to be encapsidated. We also found that an avian retroviral mutant deleted for both nucleocapsid Cys-His boxes retains the capacity to encapsidate RNA containing psi sequences, although this RNA is unstable and is thus difficult to detect in mature particles. Electron microscopy reveals that virions produced by this mutant lack a condensed core, which may allow the RNA to be accessible to nucleases.  相似文献   

7.
RNA localization in subcytoplasmic areas is a process known for more than twenty years, and more than a hundred RNAs have now been shown to be spatially regulated. In most cases, RNA localization is involved in cell polarity, either by reading spatial clues and translating them into a spatial regulation of gene expression, or more directly by controlling cytoskeletal polarity. In this review, the various functions of RNA localization will be presented, and by analyzing two examples, Ash1 mRNA in yeast and retroviral genomic RNAs in mammals, the reader will be taken step by step into the detailed mechanisms of this fascinating process.  相似文献   

8.
9.
Specificity of retroviral RNA packaging.   总被引:3,自引:25,他引:3  
  相似文献   

10.
Murine leukemia virus (MLV) produces the unspliced RNA and the singly spliced RNA at a proper ratio at a time. To identify cis-elements involved in the production of the unspliced RNA, we examined the level of unspliced RNA in a series of mutants derived from a prototype Moloney MLV mutant gag-encoding G3.6. Our present data indicated that nt 1560-1906 region in the CA-encoding region in gag was the negative cis-element and nt 5119-5355 region, which was immediately upstream of the splice acceptor site, was the positive cis-element for expression of the unspliced RNA. It was found that the former element made expression of the unspliced RNA dependent upon the latter. These two elements were functional as discrete elements and their activities were relatively position-independent.  相似文献   

11.
12.
13.
DNA-protein interactions involving enhancer and promoter sequences within the U3 regions of several avian retroviral long terminal repeats (LTRs) were studied by DNase I footprinting. The rat CCAAT/enhancer-binding protein, C/EBP, bound to all four viral LTRs examined. The Rous sarcoma virus binding site corresponded closely to the 5' limit of the LTR enhancer; nucleotides -225 to -188 were protected as a pair of adjacent binding domains. The Fujinami sarcoma virus LTR bound C/EBP at a single site at nucleotides -213 to -195. C/EBP also bound to the promoter region of the enhancerless Rous-associated virus-0 LTR at nucleotides -77 to -57. The avian myeloblastosis virus LTR bound C/EBP at three sites: nucleotides -262 to -246, -154 to -134, and -55 to -39. We have previously observed binding of C/EBP to an enhancer in the gag gene of avian retroviruses. A heat-treated nuclear extract from chicken liver bound to all of the same retroviral sequences as did C/EBP. Alignment of the avian retroviral binding sequences with the published binding sites for C/EBP in two CCAAT boxes and in the simian virus 40, polyoma, and murine sarcoma virus enhancers suggested TTGNNGCTAATG as a consensus sequence for binding of C/EBP. When two bases of this consensus sequence were altered by site-specific mutagenesis of the Rous sarcoma virus LTR, binding of the heat-stable chicken protein was eliminated.  相似文献   

14.
15.
Inhibition of retroviral replication by anti-sense RNA.   总被引:9,自引:2,他引:9       下载免费PDF全文
We tested the effect of anti-sense RNA on the replication of avian retroviruses in cultured cells. The replication of a recombinant retrovirus carrying a neomycin resistance gene (neor) in the anti-sense orientation was blocked when the cells expressed high steady-state levels of RNA molecules with neor in sequence in the sense was blocked when the cells expressed high steady-state levels of RNA molecules with neor sequences in the sense orientation, i.e., complementary to the viral sequence. Viral DNA bearing neor sequences was not detected specifically in host cells where this anti-sense RNA inhibition of viral replication occurred. These observations suggest that anti-sense RNA inhibition may be a useful strategy for the inhibition of retroviral infections.  相似文献   

16.
A plasmid was constructed in which a T7 RNA polymerase promoter was placed upstream of a recombinant amphotropic retrovirus genome containing a selectable neomycin resistance gene. To test the infectivity of the RNA produced by T7 RNA polymerase in vitro, the RNA was microinjected into the nuclei of psi 2 packaging cells. Infectious particles conferring G418 resistance were released.  相似文献   

17.
18.
The 5′-untranslated regions of all gammaretroviruses contain a conserved “double-hairpin motif” (ΨCD) that is required for genome packaging. Both hairpins (SL-C and SL-D) contain GACG tetraloops that, in isolated RNAs, are capable of forming “kissing” interactions stabilized by two intermolecular G-C base pairs. We have determined the three-dimensional structure of the double hairpin from the Moloney murine leukemia virus ([ΨCD]2, 132 nt, 42.8 kDa) using a 2H-edited NMR-spectroscopy-based approach. This approach enabled the detection of 1H-1H dipolar interactions that were not observed in previous studies of isolated SL-C and SL-D hairpin RNAs using traditional 1H-1H correlated and 1H-13C-edited NMR methods. The hairpins participate in intermolecular cross-kissing interactions (SL-C to SL-D′ and SLC′ to SL-D) and stack in an end-to-end manner (SL-C to SL-D and SL-C′ to SL-D′) that gives rise to an elongated overall shape (ca 95 Å × 45 Å ×  25 Å). The global structure was confirmed by cryo-electron tomography (cryo-ET), making [ΨCD]2 simultaneously the smallest RNA to be structurally characterized to date by cryo-ET and among the largest to be determined by NMR. Our findings suggest that, in addition to promoting dimerization, [ΨCD]2 functions as a scaffold that helps initiate virus assembly by exposing a cluster of conserved UCUG elements for binding to the cognate nucleocapsid domains of assembling viral Gag proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号