首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the N-terminus of glycoprotein-41, the HIV-1 fusion peptide, was studied by molecular dynamics simulations in an explicit sodium dodecyl sulfate micelle. The simulation provides a detailed picture of the equilibrium structure and peptide stability as it interacts with the micelle. The equilibrium location of the peptide shows the peptide at the surface of the micelle with hydrophobic residues interacting with the micelle's core. At equilibrium, the peptide adopts an alpha-helical structure from residues 5-16 and a type-1 beta-turn from 17-20 with the other residues exhibiting more flexible conformations. The primary hydrophobic interactions with the micelle are from the leucine and phenylalanine residues (Leu-7, Phe-8, Leu-9, Phe-11, Leu-12) while the alanine and glycine residues (Ala-1, Gly-3, Gly-5, Ala-6, Gly-10, Gly-13, Ala-14, Ala-15, Gly-16, Gly-10, Ala-21) interact favorably with water molecules. The results suggest that Phe-8, part of the highly conserved FLG motif of the fusion peptide, plays a key role in the interaction of the peptide with membranes. Our simulations corroborate experimental investigations of the fusion peptide in SDS micelles, providing a high-resolution picture that explains the experimental findings.  相似文献   

2.
The role played by noncovalent interactions in inducing a stable secondary structure onto the sodium dodecyl sulfate (SDS) and dodecylphosphocholine (DPC) micelle-bound conformations of (Ala(8,13,18))magainin 2 amide and the DPC micelle bound conformation of magainin 1 were determined. Two-dimensional NMR and molecular modeling investigations indicated that (Ala(8,13,18))magainin 2 amide bound to DPC micelles adopts a alpha-helical secondary structure involving residues 2-16. The four C-terminal residues converge to a lose beta-turn structure. (Ala(8,13,18))magainin 2 amide bound to SDS miscelles adopts a alpha-helical secondary structure involving residues 7-18. The C- and N-terminal residues exhibited a great deal of conformational flexibility. Magainin 1 bound to DPC micelles adopts a alpha-helical secondary structure involving residues 4-19. The C-terminal residues converge to a lose beta-turn structure. The results of this investigation indicate hydrophobic interactions are the major contributors to stabilizing the induced helical structure of the micelle-bound peptides. Electrostatic interactions between the polar head groups of the micelle and the cationic side chains of the peptides define the positions along the peptide backbone where the helical structures begin and end.  相似文献   

3.
The exchange broadening of backbone amide proton resonances of a 23-mer fusion peptide of the transmembrane subunit of HIV-1 envelope glycoprotein gp41, gp41-FP, was investigated at pH 5 and 7 at room temperature in perdeuterated sodium dodecyl sulfate (SDS) micellar solution. Comparison of resonance peaks for these pHs revealed an insignificant change in exchange rate between pH 5 and 7 for amide protons of residues 4 through 14, while the exchange rate increase at neutral pH was more prominent for amide protons of the remaining residues, with peaks from some protons becoming undetectable. The relative insensitivity to pH of the exchange for the amide protons of residues 4 through 14 is attributable to the drastic reduction in [OH–] in the micellar interior, leading to a decreased exchange rate. The A15-G16 segment represents a transition between these two regimes. The data are thus consistent with the notion that the peptide inserts into the hydrophobic core of a membrane-like structure and the A15-G16 dipeptide is located at the micellar-aqueous boundary.  相似文献   

4.
Spatial structures of proteolytic segment A (sA) of bacterioopsin of Halobacterium halobium (residues 1-36) solubilized in the mixture of methanol-chloroform (1:1), 0.1 M LiClO4 or in perdeuteriated sodium dodecyl sulfate (SDS) micelles, were determined by 2D 1H-NMR techniques. Most of the resonances in 1H-NMR spectra of fragment A were assigned using DQF-COSY, TOCSY and NOESY spectra. Deuterium exchange rates for amide protons were measured in series of NOESY spectra. 324 and 400 NOESY cross-peak volumes were measured in NOESY spectra of sA in mixture of organic solvents and SDS micelles, respectively. The sA structure was determined by local structure analysis, distance geometry calculation with program DIANA and systematic search for energetically allowed side chain rotamers consistent with NOESY cross-peak volumes. The structures of sA are similar in both milieus. These structures have the right-handed alpha-helical region from Pro-8 to Met-32 with root mean square deviation (RMSD) of 0.25 A between back bone heavy atoms and fit well with Pro-8 to Met-32 alpha-helical region in electron cryo-microscopy (ECM) model of bacteriorhodopsin [4]. The C-terminal region Gly-33-Asp-36 is disordered in both milieus, while N-terminal region Ala-2-Gly-6 in organic solvents has a fixed structure (RMSD of 0.25 A) stabilized by the Thr-5 NH...O=C Gln-3 and Ile-4 NH...O = C Ala-2 hydrogen bonds. This region of sA in SDS micelles has disordered structure with RMSD of 1.44 A for back bone heavy atoms. Torsion angles chi 1 of sA were unequivocally determined for 72% of side chains in the alpha-helical region and are identical in both milieus.  相似文献   

5.
M Ikura  O Minowa  K Hikichi 《Biochemistry》1985,24(16):4264-4269
The C-terminal half-fragment (residues 78-148) of scallop testis calmodulin was investigated by 500-MHz two-dimensional proton NMR in order to clarify the structure and the structural change accompanying Ca2+ binding. The sequential resonance assignment to individual amino acid residues was made in part (27 out of 71 residues) by a combination of correlated spectroscopy and nuclear Overhauser effect spectroscopy of a 90% H2O solution. In the Ca2+-bound state, resonances of backbone amide protons of Gly-98, Gly-134, Ile-100, Asn-137, and Val-136 appear at extremely low fields. These findings suggest that amide protons of these residues are hydrogen bonded. In the Ca2+-free state, the amide resonances of Ile-100 and Gly-134 disappear into the crowded normal shift region. This observation indicates that two hydrogen bonds of Ile-100 and Gly-134 are destroyed (or weakened) as Ca2+ ions are removed from two Ca2+-binding sites. Chemical shifts of amide and alpha-protons of residues located in the Ca2+-binding loop of domain III are similar to those of domain IV. These results suggest that the conformations of the two loops are very similar. The present results can be interpreted in terms of a structure predicted by Kretsinger [Kretsinger, R.H. (1980) Ann. N.Y. Acad. Sci. 356, 14].  相似文献   

6.
A growing number of modules including FYVE domains target key signaling proteins to membranes through specific recognition of lipid headgroups and hydrophobic insertion into bilayers. Despite the critical role of membrane insertion in the function of these modules, the structural mechanism of membrane docking and penetration remains unclear. In particular, the three-dimensional orientation of the inserted proteins with respect to the membrane surface is difficult to define quantitatively. Here, we determined the geometry of the micelle penetration of the early endosome antigen 1 (EEA1) FYVE domain by obtaining NMR-derived restraints that correlate with the distances between protein backbone amides and spin-labeled probes. The 5- and 14-doxyl-phosphatidylcholine spin-labels were incorporated into dodecylphosphocholine (DPC) micelles, and the reduction of amide signal intensities of the FYVE domain due to paramagnetic relaxation enhancement was measured. The vector of the FYVE domain insertion was estimated relative to the molecular axis by minimizing the paramagnetic restraints obtained in phosphatidylinositol 3-phosphate (PI3P)-enriched micelles containing only DPC or mixed with phosphatidylserine (PS). Additional distance restraints were obtained using a novel spin-label mimetic of PI(3)P that contains a nitroxyl radical near the threitol group of the lipid. Conformational changes indicative of elongation of the membrane insertion loop (MIL) were detected upon micelle interaction, in which the hydrophobic residues of the loop tend to move deeper into the nonpolar core of micelles. The micelle insertion mechanism of the FYVE domain defined in this study is consistent with mutagenesis data and chemical shift perturbations and demonstrates the advantage of using the spin-label NMR approach for investigating the binding geometry by peripheral membrane proteins.  相似文献   

7.
The orientation and dynamics of substance P in lipid environments.   总被引:1,自引:0,他引:1  
The membrane-associated conformation of substance P (RPKPQQFFGLM-NH2) has been previously proposed to be the NK1-receptor-active conformation. In this work, NMR methods are applied to explore the orientation and dynamics of substance P at lipid surfaces for which the peptide's three-dimensional structure had been previously determined. Here the presence of dodecylphosphocholine (DPC) or sodium dodecylsulfate (SDS) micelles has been found to cause sequence specific changes in the acid- and base-catalyzed amide proton exchange rates relative to the solution state values. On binding of substance P to SDS micelles, the FFG portion showed the largest decreases in the base-catalyzed amide exchange rates. Similar sequence-specific changes in substance P are observed in the presence of DPC micelles, albeit at much weaker levels due to fast exchange between free and bound forms of the peptide. These differences are attributed to the location of the amide protons either in the surface double layer (via electrostatic effect) or inserted into the polar head group region of the micelles (via low dielectric). The sequence-specific effects of micelle association were also observed in the homonuclear nonselective spin-lattice relaxation time; these, in combination with spin-spin relaxation times, were used to calculate correlation times for the backbone amide protons. These data combined with paramagnetic broadening observations on peptide protons in the presence of spin-labeled lipids yield a detailed model of the interaction of substance P with lipid surfaces.  相似文献   

8.
Topologically, platelet factor-4 kinocidins consist of distinct N-terminal extended, C-terminal helical, and interposing gamma-core structural domains. The C-terminal alpha-helices autonomously confer direct microbicidal activity, and the synthetic antimicrobial peptide RP-1 is modeled upon these domains. In this study, the structure of RP-1 was assessed using several complementary techniques. The high-resolution structure of RP-1 was determined by NMR in anionic sodium dodecyl sulfate (SDS) and zwitterionic dodecylphosphocholine (DPC) micelles, which approximate prokaryotic and eukaryotic membranes, respectively. NMR data indicate the peptide assumes an amphipathic alpha-helical backbone conformation in both micelle environments. However, small differences were observed in the side-chain orientations of lysine, tyrosine, and phenylalanine residues in SDS versus DPC environments. NMR experiments with a paramagnetic probe indicated differences in positioning of the peptide within the two micelle types. Molecular dynamics (MD) simulations of the peptide in both micelle types were also performed to add insight into the peptide/micelle interactions and to assess the validity of this technique to predict the structure of peptides in complex with micelles. MD independently predicted RP-1 to interact only peripherally with the DPC micelle, leaving its spherical shape intact. In contrast, RP-1 entered deeply into and significantly distorted the SDS micelle. Overall, the experimental and MD results support a preferential specificity of RP-1 for anionic membranes over zwitterionic membranes. This specificity likely derives from differences in RP-1 interaction with distinct lipid systems, including subtle differences in side chain orientations, rather than gross changes in RP-1 structure in the two lipid environments.  相似文献   

9.
The N-terminal domain of HIV-1 glycoprotein 41,000 (gp41) participates in viral fusion processes. Here, we use physical and computational methodologies to examine the secondary structure of a peptide based on the N terminus (FP; residues 1-23) in aqueous and detergent environments. (12)C-Fourier transform infrared (FTIR) spectroscopy indicated greater alpha-helix for FP in lipid-detergent sodium dodecyl sulfate (SDS) and aqueous phosphate-buffered saline (PBS) than in only PBS. (12)C-FTIR spectra also showed disordered FP conformations in these two environments, along with substantial beta-structure for FP alone in PBS. In experiments that map conformations to specific residues, isotope-enhanced FTIR spectroscopy was performed using FP peptides labeled with (13)C-carbonyl. (13)C-FTIR results on FP in SDS at low peptide loading indicated alpha-helix (residues 5 to 16) and disordered conformations (residues 1-4). Because earlier (13)C-FTIR analysis of FP in lipid bilayers demonstrated alpha-helix for residues 1-16 at low peptide loading, the FP structure in SDS micelles only approximates that found for FP with membranes. Molecular dynamics simulations of FP in an explicit SDS micelle indicate that the fraying of the first three to four residues may be due to the FP helix moving to one end of the micelle. In PBS alone, however, electron microscopy of FP showed large fibrils, while (13)C-FTIR spectra demonstrated antiparallel beta-sheet for FP (residues 1-12), analogous to that reported for amyloid peptides. Because FP and amyloid peptides each exhibit plaque formation, alpha-helix to beta-sheet interconversion, and membrane fusion activity, amyloid and N-terminal gp41 peptides may belong to the same superfamily of proteins.  相似文献   

10.
Yan C  Digate RJ  Guiles RD 《Biopolymers》1999,49(1):55-70
Structural and dynamic properties of opioid peptide E have been examined in an sodium dodecyl sulfate (SDS) micelle. Structural and dynamic studies both indicate that this peptide exhibits greater segmental mobility than typical structured proteins. An nmr structural analysis of adrenal peptide E in SDS micelles indicated the presence of two well-defined beta-turns, one at the N-terminus encompassing residues 3 to 6, and the second in the region between residues 15 and 18. Certain side chain dihedral angles were also remarkably well defined, such as the chi 1 angle of F4, which exhibited a trans configuration. These calculated structures were based on a set of 9.5 restraints per residue. The backbone dynamics of peptide E in SDS micelles were examined through an analysis of 15N-relaxation parameters. An extended model-free analysis was used to interpret the relaxation data. The overall rotational correlation time is 19.7 ns. the average order parameter S2 is 0.66 +/- 0.15. The N-terminal loop region residues including G3 to R6 have an average order parameter of 0.70 +/- 0.23. The average order parameter lies somewhere between that observed for a random coil (e.g., S2 = 0.3) and that of a well-defined tertiary fold (e.g., S2 = 0.86). This suggests that peptide E in SDS micelles adopts a restricted range of conformations rather than a random coil. Based on the helical structure recently obtained for the highly homologous kappa-agonist dynorphin-A(1-17) and the beta-turn in the same region of peptide E, it is reasonable to assume that these two elements of secondary structure reflect different receptor subtype binding geometries. The intermediate order parameters observed for peptide E in an SDS micelle suggest a degree of dynamic mobility that may enable facile interconversion between helical and beta-turn geometries in the N-terminal agonist domain.  相似文献   

11.
Rozek A  Friedrich CL  Hancock RE 《Biochemistry》2000,39(51):15765-15774
Indolicidin is a cationic, 13-residue antimicrobial peptide (ILPWKWPWWPWRR-NH(2)) which is unusually rich in tryptophan and proline. Its antimicrobial action involves the bacterial cytoplasmic membrane. Fluorescence and circular dichroism spectra demonstrated the structural similarity of indolicidin in complexes with large unilamellar phospolipid vesicles and with detergent micelles. The structure of indolicidin bound to zwitterionic dodecylphosphocholine (DPC) and anionic sodium dodecyl sulfate (SDS) micelles was determined using NMR methods and shown to represent a unique membrane-associated peptide structure. The backbone structure in DPC, well defined between residues 3 and 11, was extended, with two half-turns at residues Lys-5 and Trp-8. The backbone structure in SDS, well defined between residues 5 and 11, was also extended, but lacked the bend in the C-terminal half. Indolicidin in complexes with DPC had a central hydrophobic core composed of proline and tryptophan, which was bracketed by positively charged regions near the peptide termini. The tryptophan side chains, with one exception, folded flat against the peptide backbone, thus giving the molecule a wedge shape. Indolicidin in complexes with SDS had an arrangement of hydrophobic and cationic regions similar to that found in the presence of DPC. The tryptophan side chains were less well defined than for indolicidin in DPC and extended away from the peptide backbone. The preferred location of indolicidin in DPC micelles and lipid bilayers, analyzed using spin-label probes, was at the membrane interface.  相似文献   

12.
ACTH (1-10), an adrenocorticotropin hormone fragment, was studied by molecular dynamics (MD) simulation in the NPT ensemble in an explicit sodium dodecylsulfate (SDS) micelle. Initially, distance restraints derived from NMR nuclear Overhauser enhancements were incorporated during the equilibration stage of the simulation. The analyses of the trajectories from the subsequent unrestrained MD showed that ACTH (1-10) does not conform to a helical structure at the micelle-water interface; however, the structure is amphipathic. The loss of the helical structure is due to decreased intramolecular hydrogen bonding accompanied by an increase of hydrogen bonding between the amide hydrogens of the peptide and the micelle head-groups. ACTH (1-10) was found to lie on the surface of the SDS micelle. Most of the hydrophobic interactions came from the side-chains of Met-4, Phe-7 and Trp-9. The peptide bonds were either hydrated or involved in intramolecular hydrogen bonding. Decreased hydration for the backbone of His-6 and Phe-7 was due to intermolecular hydrogen bonding with the SDS head-groups. The time correlation functions of the N-H bonds of the peptide in water and in the micelle showed that the motions of the peptide, except for the N- and C-termini, are significantly reduced when partitioned in the micelle.  相似文献   

13.
Photochemically induced dynamic nuclear polarization (CIDNP)-1H-NMR spectroscopy has been used to study the interaction of the protein hormone epidermal growth factor (EGF) with micelles of sodium dodecyl sulfate (SDS) and dodecylphosphorylcholine (DPC). Conventional 1H-NMR spectra show that most protein resonances remain unperturbed when micelles are added to solution, which argues that the overall protein conformation is maintained in the presence of SDS or DPC at the concentrations used. Photo-CIDNP enhancements of resonances assigned to aromatic side chains of residues at the COOH terminus and beta-sheet regions of murine EGF (i.e. Trp-49, Trp-50, and Tyr-37) are considerably reduced in the presence of micelles, while resonances of aromatic side chains of residues found elsewhere on the protein surface are mostly unaffected. This suggests that the primary interaction between murine EGF and the micelle occurs at the micelle-bulk solvent interface. The overall negatively charged surface of SDS micelles tends to induce a stronger interaction with the protein compared to the zwitterionic DPC micelles, probably due to electrostatic interactions. Cleavage of the COOH-terminal pentapeptide containing both tryptophan residues enhances the already present, but weak, interaction with Tyr-10 and attenuates it with Tyr-37. A similar interaction pattern is found with rat EGF suggesting that at least concerning these two species of EGF the interaction is somewhat specific and conserved. A simple mass-action model for protein-micelle interaction is also presented.  相似文献   

14.
In this work, the naturally occurring beta-hairpin antimicrobial peptide protegrin-1 (PG-1) is studied by molecular dynamics simulation in all-atom sodium dodecylsulfate and dodecylphosphocholine micelles. These simulations provide a high-resolution picture of the interactions between the peptide and simple models of bacterial and mammalian membranes. Both micelles show significant disruption, as is expected for a peptide that is both active against bacteria and toxic to host cells. There is, however, clear differentiation between the behavior in SDS versus DPC, which suggests different mechanisms of interaction for PG-1 with mammalian and bacterial membranes. Specifically, the equilibrium orientation of the peptide relative to SDS is a mirror image of its position relative to DPC. In both systems, the arginine residues of PG-1 strongly interact with the head groups of the micelles. In DPC, the peptide prefers a location closer to the core of the micelle with Phe12, Val14, and Val16 imbedded in the core and the other side of the hairpin, which includes Leu5 and Tyr7, located closer to the surface of the micelle. In SDS, the peptide prefers a location at the micelle-water interface. The peptide position is reversed, with Leu5 and Cys6 imbedded furthest in the micelle core and Phe12, Val14, and Val16 on the surface of the micelle. We discuss the implications of these results with respect to activity and toxicity.  相似文献   

15.
Lu M  Stoller MO  Wang S  Liu J  Fagan MB  Nunberg JH 《Journal of virology》2001,75(22):11146-11156
Membrane fusion by human immunodeficiency virus type 1 (HIV-1) is promoted by the refolding of the viral envelope glycoprotein into a fusion-active conformation. The structure of the gp41 ectodomain core in its fusion-active state is a trimer of hairpins in which three antiparallel carboxyl-terminal helices pack into hydrophobic grooves on the surface of an amino-terminal trimeric coiled coil. In an effort to identify amino acid residues in these grooves that are critical for gp41 activation, we have used alanine-scanning mutagenesis to investigate the importance of individual side chains in determining the biophysical properties of the gp41 core and the membrane fusion activity of the gp120-gp41 complex. Alanine substitutions at Leu-556, Leu-565, Val-570, Gly-572, and Arg-579 positions severely impaired membrane fusion activity in envelope glycoproteins that were for the most part normally expressed. Whereas alanine mutations at Leu-565 and Val-570 destabilized the trimer-of-hairpins structure, mutations at Gly-572 and Arg-579 led to the formation of a stable gp41 core. Our results suggest that the Leu-565 and Val-570 residues are important determinants of conserved packing interactions between the amino- and carboxyl-terminal helices of gp41. We propose that the high degree of sequence conservation at Gly-572 and Arg-579 may result from selective pressures imposed by prefusogenic conformations of the HIV-1 envelope glycoprotein. Further analysis of the gp41 activation process may elucidate targets for antiviral intervention.  相似文献   

16.
The wild-type (wt) N-terminal 23-residue fusion peptide (FP) of the human immunodeficiency virus (HIV) fusion protein gp41 and its V2E mutant have been studied by nuclear magnetic resonance (NMR) spectroscopy in dodecylphosphocholine (DPC) micelles as membrane mimics. A number of NMR techniques have been used. Pulsed field-gradient diffusion measurements in DPC and in 4:1 DPC/sodium dodecylsulfate mixed micelles showed that there is no major difference between the partition coefficients of the fusogenic wt peptide and the V2E mutant in these micelles, indicating that there is no correlation between the activity of the fusion peptides and their membrane affinities. The nuclear Overhauser enhancement (NOE) patterns and the chemical shift index for these two peptides indicated that both FP are in an alpha helical conformation between the Ile4 to Leu12 or to Ala15 region. Simulated annealing showed that the helical region extends from Ile4 to Met19. The two FPs share similar conformational characteristics, indicating that the conformation of the FP is not an important factor determining its activity. The spin-label studies, utilizing spin labels 5- and 16-doxystearic acids in the DPC micelles, provided clear indication that the wt FP inserts its N-terminus into the micelles while the V2E mutant does not insert into the micelles. The conclusion from the spin-label results is corroborated by deuterium amide proton exchange experiments. The correlation between the oblique insertion of the FP and its fusogenic activity is in excellent agreement with results from our molecular dynamics simulation and from other previous studies.  相似文献   

17.
L Zetta  A De Marco  G Zannoni  B Cestaro 《Biopolymers》1986,25(12):2315-2323
1H-nmr spectra of Met-enkephalin dissolved in aqueous solution of sodiumdodecylsulfate (SDS) micelles are reported as a function of pH and temperature. The temperature behavior of the amide protons is compared with that observed for the same peptide dissolved in aqueous solution of lyso-phosphatidylcholine (LPC) and lyso-phosphatidylcholine-sulfatide (LPC-SH) micelles. The temperature coefficients are affected by the micelle polarity, which suggests that the peptide backbone is not remote from the micelle surface. pH titration performed in the presence of SDS micelles gives a number of intrinsic and extrinsic pKa values, indicative of a folded structure of the opioid molecule. This conformation is characterized by the existence of an intramolecular hydrogen bond involving the Met-5 amide proton and an interaction of the N-terminal residue with the aliphatic side chains of both Phe-4 and Met-5.  相似文献   

18.
Retroviral transmembrane proteins (TMs) contain an N-terminal fusion peptide that initiates virus-cell membrane fusion. The fusion peptide is linked to the coiled-coil core through a conserved sequence that is often rich in glycines. We investigated the functional role of the glycine-rich segment, Met-326 to Ser-337, of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, by alanine and proline scanning mutagenesis. Alanine substitution for the hydrophobic residue Ile-334 caused an approximately 90% reduction in cell-cell fusion activity without detectable effects on the lipid-mixing and pore formation phases of fusion. Alanine substitutions at other positions had smaller effects (Gly-329, Val-330, and Gly-332) or no effect on fusion function. Proline substitution for glycine residues inhibited cell-cell fusion function with position-dependent effects on the three phases of fusion. Retroviral glycoprotein fusion function thus appears to require flexibility within the glycine-rich segment and hydrophobic contacts mediated by this segment.  相似文献   

19.
A designed peptide, PGAa showed an excellent antifungal activity as well as an efficient bactericidal activity toward gram-positive, especially in the pathogenic yeast Candida albicans 28838. The solution structures of PGAa have been determined both in 40% TFE/water solution and DPC micelle by CD and NMR spectroscopy. Based on NOEs, vicinal coupling constants, backbone amide exchange rates, and chemical shift indices, PGAa formed a long amphipathic alpha-helical conformation in both TFE and DPC micelle environments, spanning the residues Ile(2)-Ala(19) in TFE and Lys(5)-Ala(19) in DPC micelle, respectively. Solution structures suggested that the hydrophobic residues would interact with the fatty acyl chains of the lipid bilayer, while the positively charged side-chains exposed to aqueous environments. Therefore, we conclude that the alpha-helical structure as well as the highly amphiphatic nature of PGAa peptide may play a critical role in its antimicrobial activity as well as selectivities in different species.  相似文献   

20.
Khandelia H  Kaznessis YN 《Peptides》2006,27(6):1192-1200
Molecular dynamics simulations of three related helical antimicrobial peptides have been carried out in zwitterionic diphosphocholine (DPC) micelles and anionic sodiumdodecylsulfate (SDS) micelles. These systems can be considered as model mammalian and bacterial membrane interfaces, respectively. The goal of this study is to dissect the differences in peptide composition which make the mutant peptides (novispirin-G10 and novispirin-T7) less toxic than the parent peptide ovispirin (OVIS), although all three peptides have highly antibacterial properties. Compared to G10 and T7, OVIS inserts deepest into the DPC micelle. This correlates well with the lesser toxicity of G10 and T7. There is strong evidence which suggests that synergistic binding of hydrophobic residues drives binding of OVIS to the micelle. The helical content of G10 and T7 is reduced in the presence of DPC, and this leads to less amphipathic peptide structures, which bind weakly to the micelle. Simulations in SDS were carried out to compare the influence of membrane electrostatics on peptide structure. All three peptides bound strongly to SDS, and retained helical form. This corresponds well with their equally potent antibacterial properties. Based on the simulations, we argue that secondary structure stability often leads to toxic properties. We also propose that G10 and T7 operate by the carpet mechanism of cell lysis. Toxicity of peptides operating by the carpet mechanism can be attenuated by reducing the peptide helical content. The simulations successfully capture experimental binding states, and the different depths of binding of the three peptides to the two micelles correlate with their antibacterial and toxic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号