共查询到20条相似文献,搜索用时 0 毫秒
1.
Barzik M Carl UD Schubert WD Frank R Wehland J Heinz DW 《Journal of molecular biology》2001,309(1):155-169
Cellular activities controlled by signal transduction processes such as cell motility and cell growth depend on the tightly regulated assembly of multiprotein complexes. Adapter proteins that specifically interact with their target proteins are key components required for the formation of these assemblies. Ena/VASP-homology 1 (EVH1) domains are small constituents of large modular proteins involved in microfilament assembly that specifically recognize proline-rich regions. EVH1 domain-containing proteins are present in neuronal cells, like the Homer/Vesl protein family that is involved in memory-generating processes. Here, we describe the crystal structure of the murine EVH1 domain of Vesl 2 at 2.2 A resolution. The small globular protein consists of a seven-stranded antiparallel beta-barrel with a C-terminal alpha-helix packing alongside the barrel. A shallow groove running parallel with beta-strand VI forms an extended peptide-binding site. Using peptide library screenings, we present data that demonstrate the high affinity of the Vesl 2 EVH1 domain towards peptide sequences containing a proline-rich core sequence (PPSPF) that requires additional charged amino acid residues on either side for specific binding. Our functional data, substantiated by structural data, demonstrate that the ligand-binding of the Vesl EVH1 domain differs from the interaction characteristics of the previously examined EVH1 domains of the Evl/Mena proteins. Analogous to the Src homology 3 (SH3) domains that bind their cognate ligands in two distinct directions, we therefore propose the existence of two distinct classes of EVH1 domains. 相似文献
2.
A complex of N-WASP and WASP-interacting protein (WIP) plays an important role in actin-based motility of vaccinia virus and the formation of filopodia. WIP is also required to maintain the integrity of the actin cytoskeleton in T and B lymphocytes and is essential for T cell activation. However, in contrast to many other N-WASP binding proteins, WIP does not stimulate the ability of N-WASP to activate the Arp2/3 complex. Although the WASP homology 1 (WH1) domain of N-WASP interacts directly with WIP, we still lack the exact nature of its binding site. We have now identified and characterized the N-WASP WH1 binding motif in WIP in vitro and in vivo using Shigella and vaccinia systems. The WH1 domain, which is predicted to have a similar structural fold to the Ena/VASP homology 1 (EVH1) domain, binds to a sequence motif in WIP (ESRFYFHPISD) that is very different from the EVH1 proline-rich DL/FPPPP ligand. Interaction of the WH1 domain of N-WASP with WIP is dependent on the two highly conserved phenylalanine residues in the motif. The WH1 binding motif we have identified is conserved in WIP, CR16, WICH, and yeast verprolin. 相似文献
3.
The recently described Spred protein family has been implicated in the modulation of receptor tyrosine kinase signalling. We report the crystal structure of the Enabled/vasodilator-stimulated phosphoprotein homology-1 (EVH1) domain from Xenopus tropicalis Spred1, solved to 1.15 A resolution. This structure confirms that the Spred EVH1 adopts the pleckstrin-homology fold, with a similar secondary structure to Enabled. A translation of one of the peptide-binding groove beta-strands narrows this groove, whilst one end of the groove shows structural flexibility. We propose that Spred1 will bind peptides that are less proline-rich than other EVH1 domains, with conformational changes indicating an induced fit. 相似文献
4.
5.
In the immune system, transforming growth factor-beta (TGFbeta) affects multiple cell lineages by either promoting or opposing their differentiation, survival and proliferation. Understanding the cellular mechanisms of TGFbeta-mediated regulation is complicated due to a broad distribution of TGFbeta receptors on the surface of different immune-cell types. Recent studies using in vivo genetic approaches revealed a critical role for TGFbeta signalling in T cells in restraining fatal autoimmune lesions. Here, we review recent advances in our understanding of a role for TGFbeta signalling in the regulation of T-cell differentiation in the thymus and in the periphery, with a particular emphasis on TGFbeta-mediated control of self-reactive T cells. 相似文献
6.
7.
8.
Stephanie Bertrand Ildiko Somorjai Jordi Garcia-Fernandez Thomas Lamonerie Hector Escriva 《BMC evolutionary biology》2009,9(1):226
Background
Fibroblast Growth Factors (FGF) and their receptors are well known for having major implications in cell signalling controlling embryonic development. Recently, a gene coding for a protein closely related to FGFRs (Fibroblast Growth Factor Receptors) called FGFR5 or FGFR-like 1 (FGFRL1), has been described in vertebrates. An orthologous gene was also found in the cephalochordate amphioxus, but no orthologous genes were found by the authors in other non-vertebrate species, even if a FGFRL1 gene was identified in the sea urchin genome, as well as a closely related gene, named nou-darake, in the planarian Dugesia japonica. These intriguing data of a deuterostome-specific gene that might be implicated in FGF signalling prompted us to search for putative FGFRL1 orthologues in the completely sequenced genomes of metazoans. 相似文献9.
Vrp1 (verprolin, End5) is a Saccharomyces cerevisiae actin-associated protein and is related to mammalian Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP). Vrp1-deficient (vrp1 Delta) cells are inviable at high temperature, have partially depolarized cortical actin patches and have defects in both actomyosin ring-dependent and Hof1 (Cyk2)-dependent pathways of cytokinesis. We demonstrate here that N-Vrp1(1-364) and C-Vrp1(364-817) are each sufficient to restore viability, actomyosin ring constriction and Hof1 localization at 37 degrees C to vrp1 Delta. C-Vrp1, like Vrp1, partially co-localizes with cortical actin patches and restores actin patch polarization to vrp1 Delta. Cortical localization of C-Vrp1, but not Vrp1, requires Las17. N-Vrp1 exhibits diffuse cytoplasmic localization and functions in cytokinesis without efficiently restoring polarization of cortical actin patches. N-Vrp1 function is not abolished by mutations affecting the WASP homology 2 (WH2) [verprolin homology (V)] actin-binding domain. N-Vrp1 may function through the type I myosins and actin, while C-Vrp1 may function through both Las17 (Bee1) and type I myosins. The functions of Vrp1 in viability at 37 degrees C and cytokinesis do not require efficient localization to, and function in, the cortical actin cytoskeleton. 相似文献
10.
The AAA-ATPase Cdc48/p97 controls a large array of cellular functions including protein degradation, cell division, membrane fusion through its ability to interact with and control the fate of ubiquitylated proteins. More recently, Cdc48/p97 also appeared to be involved in autophagy, a catabolic cell response that has long been viewed as completely distinct from the Ubiquitine/Proteasome System. In particular, conjugation by ubiquitin or ubiquitin-like proteins as well as ubiquitin binding proteins such as Cdc48/p97 and its cofactors can target degradation by both catabolic pathways. This review will focus on the recently described functions of Cdc48/p97 in autophagosome biogenesis as well as selective autophagy. 相似文献
11.
The intracellular mechanism of transforming growth factor-beta (TGFbeta) signalling via kinase receptors and SMAD effectors is firmly established, but recent studies of human cardiovascular syndromes such as Marfan syndrome and pre-eclampsia have refocused attention on the importance of regulating the availability of active extracellular TGFbeta. It seems that elastic extracellular matrix (ECM) components have a crucial role in controlling TGFbeta signalling, while soluble and membrane bound forms of TGFbeta co-receptors add further layers of regulation. Together, these extracellular interactions determine the final bioavailability of TGFbeta to vascular cells, and dysregulation is associated with an increasing number of vascular pathologies. 相似文献
12.
Dual epitope recognition by the VASP EVH1 domain modulates polyproline ligand specificity and binding affinity
下载免费PDF全文

Ball LJ Kühne R Hoffmann B Häfner A Schmieder P Volkmer-Engert R Hof M Wahl M Schneider-Mergener J Walter U Oschkinat H Jarchau T 《The EMBO journal》2000,19(18):4903-4914
The Ena-VASP family of proteins act as molecular adaptors linking the cytoskeletal system to signal transduction pathways. Their N-terminal EVH1 domains use groups of exposed aromatic residues to specifically recognize 'FPPPP' motifs found in the mammalian zyxin and vinculin proteins, and ActA protein of the intracellular bacterium Listeria monocytogenes. Here, evidence is provided that the affinities of these EVH1-peptide interactions are strongly dependent on the recognition of residues flanking the core FPPPP motifs. Determination of the VASP EVH1 domain solution structure, together with peptide library screening, measurement of individual K(d)s by fluorescence titration, and NMR chemical shift mapping, revealed a second affinity-determining epitope present in all four ActA EVH1-binding motifs. The epitope was shown to interact with a complementary hydrophobic site on the EVH1 surface and to increase strongly the affinity of ActA for EVH1 domains. We propose that this epitope, which is absent in the sequences of the native EVH1-interaction partners zyxin and vinculin, may provide the pathogen with an advantage when competing for the recruitment of the host VASP and Mena proteins in the infected cell. 相似文献
13.
14.
The actin cytoskeleton plays a central role in many cell biological processes. The structure and dynamics of the actin cytoskeleton are regulated by numerous actin-binding proteins that usually contain one of the few known actin-binding motifs. WH2 domain (WASP homology domain-2) is a approximately 35 residue actin monomer-binding motif, that is found in many different regulators of the actin cytoskeleton, including the beta-thymosins, ciboulot, WASP (Wiskott Aldrich syndrome protein), verprolin/WIP (WASP-interacting protein), Srv2/CAP (adenylyl cyclase-associated protein) and several uncharacterized proteins. The most highly conserved residues in the WH2 domain are important in beta-thymosin's interactions with actin monomers, suggesting that all WH2 domains may interact with actin monomers through similar interfaces. Our sequence database searches did not reveal any WH2 domain-containing proteins in plants. However, we found three classes of these proteins: WASP, Srv2/CAP and verprolin/WIP in yeast and animals. This suggests that the WH2 domain is an ancient actin monomer-binding motif that existed before the divergence of fungal and animal lineages. 相似文献
15.
Understanding how single nucleotide polymorphisms (SNPs) lead to disease at a molecular level provides a starting point for improved therapeutic intervention. SNPs in the innate immune receptor nucleotide oligomerisation domain 2 (NOD2) can cause the inflammatory disorders Blau Syndrome (BS) and early onset sarcoidosis (EOS) through receptor hyperactivation. Here, we show that these polymorphisms cluster into two primary locations: the ATP/Mg2+-binding site and helical domain 1. Polymorphisms in these two locations may consequently dysregulate ATP hydrolysis and NOD2 autoinhibition, respectively. Complementary mutations in NOD1 did not mirror the NOD2 phenotype, which indicates that NOD1 and NOD2 are activated and regulated by distinct methods. 相似文献
16.
17.
Human apurinic/apyrimidinic endonuclease 1 (APE1) is one of the key participants in the DNA base excision repair system. APE1 hydrolyzes DNA adjacent to the 5′-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3′-hydroxyl group and a 5′-deoxyribose phosphate moiety. APE1 exhibits 3′-phosphodiesterase, 3′-5′-exonuclease, and 3-phosphatase activities. APE1 was also identified as a redox factor (Ref-1). In this review, data on the role of APE1 in the DNA repair process and in other metabolic processes occurring in cells are analyzed as well as the interaction of this enzyme with DNA and other proteins participating in the repair system. 相似文献
18.
19.
20.
Pennanen Paula Kallionpää Roope A. Peltonen Sirkku Nissinen Liisa Kähäri Veli-Matti Heervä Eetu Peltonen Juha 《Molecular biology reports》2021,48(2):1243-1254
Molecular Biology Reports - Little is known about the signaling pathways involved in the differentiation of human osteoclasts. The present study evaluated the roles of the Ras/PI3K/Akt/mTOR,... 相似文献