首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we investigate the capability of low concentrations of Papain to stimulate cartilage mesenchymal cells proliferation and transformation to chondrocytes and evaluate the healing capability of partial thickness defects in medial condyle cartilage of 30 rabbits’ knee joints. Papain 0.1 mg/ml and Ringer saline l ml each were injected intra-articularly to rabbits of experimental and control groups (15 animals each). Healthy cartilage from lateral condyle and cartilage from medial condyle where the surgical defect was created were studied histologically and by TEM. The study revealed that 0.1 mg/ml Papain activates proliferation and spreading of mesenchymal stem cells to young forms of chondrocyte from perichondrium to the upper layers of healthy cartilage. In only 22.27% cases of the experimental group, surgical defects filled with cartilaginous tissue on the background of distinct destruction of collagenous matrix in the native cartilage. However, in 55.5% of the control group the defect was spontaneously healed by hyaline cartilaginous tissue completely or partially on the basis of slight destruction of collagenous matrix. The defect site was filled with activated chondrocyte-like cells from the subchondral plate (not perichondrium) in both groups, which acquired some cisterns of rough endoplasmic reticulum (RER) and produced matrix proteins. The results suggest that Papain did not ameliorate the recovery of cartilage defects acquired through surgically-induced injury of collagenous matrix in native cartilage. We observed that articular cartilage is the source of mesenchymal stem cells which have the ability to transform into young forms of chondrocytes. This transformation process depends on the level of destruction of native cartilage collagen matrix induced by the defect or by Papain.  相似文献   

2.
The limited source of healthy primary chondrocytes restricts the clinical application of tissue engineering for cartilage repair. Therefore, method to maintain or restore the chondrocyte phenotype during in vitro expansion is essential. The objective of this study is to establish the beneficial effect of ECM molecules on restoring the re‐expression of cartilaginous markers in primary human chondrocytes after extensive monolayer expansion. During the course of chondrocyte serial expansion, COL2A1, SOX9, and AGN mRNA expression levels, and GAG accumulation level were reduced significantly in serially passaged cells. Exogenous type II collagen dose‐dependently elevated GAG level and induced the re‐expression of cartilaginous marker mRNAs in P7 chondrocytes. Chondroitin sulfate did not show significant effect on P7 chondrocytes, while hyaluronic acid inhibited the expression of SOX9 and AGN mRNAs. Upon treatment with type II collagen, FAK, ERK1/2, and JNK were activated via phosphorylation in P7 chondrocytes within 15 min. Furthermore, GFOGER integrin blocking peptide, MEK inhibitor and JNK inhibitor, not p38 inhibitor, significantly reduced the type II collagen‐induced GAG deposition level. Finally, in the presence of TGF‐β1 and IGF‐I, P7 chondrocytes cultured in 3D type II collagen matrix exhibited better cartilaginous features than those cells cultured in the type I collagen matrix. In conclusion, type II collagen alone can effectively restore cartilaginous features of expanded P7 human chondrocytes. It is probably mediated via the activation of FAK‐ERK1/2 and FAK‐JNK signaling pathways. The potential application of type II collagen in expanding a scarcity of healthy chondrocytes in vitro for further tissue engineering is implicated. J. Cell. Physiol. 226: 1981–1988, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The present study represents a first step in investigating the possible involvement of cyclic AMP in the stimulation of somite chondrogenesis elicited by extracellular matrix components produced by the embryonic notochord. Dibutyryl cyclic AMP (db-cAMP) at 1.0 mM severely impairs “spontaneous” somite chondrogenesis, i.e., inhibits the formation of the small amount of cartilaginous matrix normally formed by embryonic somites in vitro in the absence of inducing tissues. This inhibition of cartilaginous matrix formation is reflected in a 30–40% reduction in sulfated glycosaminoglycan (GAG) accumulation. 8-Bromo-cyclic AMP also severely inhibits cartilage formation and sulfated GAG accumulation by somite explants. This impairment is limited to cyclic AMP derivatives; dibutyryl cyclic GMP, 5′-AMP, and 2′,3′-AMP have no effect. The inhibitory effect of cyclic AMP derivatives is mimicked by the cyclic AMP-phosphodiesterase inhibitor, theophylline, and potentiated by the addition of both db-cAMP and theophylline. Dibutyryl cyclic AMP and/or theophylline also inhibit the stimulation of cartilaginous matrix formation and sulfated GAG accumulation normally elicited by the embryonic notochord, reducing accumulation to a level similar to that found in somite explants without notochord. The inhibition of chondrogenesis by cyclic AMP in notochord-somite explants appears to result from an inability of somites to respond and not from an effect on the inductive capacity of the notochord, since db-cAMP has no detectable effect on the synthesis of molecules (sulfated GAG and collagen) by the notochord that have been implicated in its inductive activity. Finally, db-cAMP and/or theophylline inhibit the stimulation of somite chondrogenesis normally elicited by purified Type I collagen substrates. Dibutyryl cyclic AMP and theophylline reduce sulfated GAG accumulation by somites cultured on collagen to a level even below that accumulated by somites cultured in the absence of collagen, i.e., on Millipore filters.  相似文献   

4.
Undifferentiated progenitor cells of mandibular condyles of neonatal mice were kept in a tissue culture system for up to 9 days. After 2 days in culture, new chondroblasts developed within the explants, whereas the peripheries of the latter were occupied by undifferentiated cells undergoing mitosis. By 4 days in culture, many of the cartilage cells showed signs of hypertrophy, while the matrix revealed positive reactivity for type II collagen and matrix metachromasia. The process of maturation of cartilage cells appeared to have reached its final stages after 6 days in culture, at a time when the initial loci of matrix mineralization could be easily identified. Concomitantly, peripheral areas bordering the cartilaginous core, as well as portions of the cartilage, reacted positively for type I collagen and fibronectin. Light microscopy examination showed signs of new bone formation after 9 days in culture. The extracellular matrix at the upper portion of the explant, facing the medium-air interface, reacted intensely with antibodies against type I collagen and fibronectin, but not with antibodies against type II collagen. Further, the newly formed osteoid was found to have undergone mineralization, thus forming an expanded layer of new bony tissue. A close spatial association was found between mature, mineralized cartilage and new bone. Hence, we hereby introduce a new in vitro system serving as an experimental model for studies related to the differentiation of progenitor cells into chondroblasts, which in turn promote ossification.  相似文献   

5.
A complex morphological investigation (histology, histochemistry, scanning and transmissive electron microscopy, electron histochemistry) has been performed to study the intercellular substance of the costal hyalinous cartilage. It has been demonstrated that the fibrillar framework of the costal cartilage consists of branching collagenous fibrillae, chaotically scattering. The fibrillae are surrounded with the ground substance; one of its components is the reticular ruthenium-positive structure.  相似文献   

6.
This is the first successful report of the rapid regeneration of three-dimensional large and homogeneous cartilaginous tissue from rabbit bone marrow cells without a scaffold using a rotating wall vessel (RWV) bioreactor, which simulates a microgravity environment for cells. Bone marrow cells cultured for 3 weeks in DMEM were resuspended and cultured for 4 weeks in the chondrogenic medium within the vessel. Large cylindrical cartilaginous tissue with dimensions of (1.25 +/- 0.06) x (0.60 +/- 0.08) cm (height x diameter) formed. Their cartilage marker expression was confirmed by mRNA expressions of aggrecan, collagen type I and II, and glycosaminoglycan (GAG)/DNA ratio. Their cartilaginous properties were demonstrated by toluidine blue, safranin-O staining, and polarization.  相似文献   

7.
Fracture repair recapitulates in adult organisms the sequence of cell biological events of endochondral ossification during skeletal development and growth. After initial inflammation and deposition of granulation tissue, a cartilaginous callus is formed which, subsequently, is remodeled into bone. In part, bone formation is influenced also by the properties of the extracellular matrix of the cartilaginous callus. Deletion of individual macromolecular components can alter extracellular matrix suprastructures, and hence stability and organization of mesenchymal tissues. Here, we took advantage of the collagen IX knockout mouse model to better understand the role of this collagen for organization, differentiation and maturation of a cartilaginous template during formation of new bone. Although a seemingly crucial component of cartilage fibrils is missing, collagen IX-deficient mice develop normally, but are predisposed to premature joint cartilage degeneration. However, we show here that lack of collagen IX alters the time course of callus differentiation during bone fracture healing. The maturation of cartilage matrix was delayed in collagen IX-deficient mice calli as judged by collagen X expression during the repair phase and the total amount of cartilage matrix was reduced. Entering the remodeling phase of fracture healing, Col9a1(-/-) calli retained a larger percentage of cartilage matrix than in wild type indicating also a delayed formation of new bone. We concluded that endochondral bone formation can occur in collagen IX knockout mice but is impaired under conditions of stress, such as the repair of an unfixed fractured long bone.  相似文献   

8.
Scanning and transmission microscopy of the articular cartilage was performed in femoral condyles of persons at the age of 30-50 years. It was demonstrated that hyaline cartilage is covered with a protective fibrillar layer consisting of tightly pressed collagenous fibrillae with an underlying layer of fibroblastic cells. In the intracellular substance of the hyaline cartilage fibrillar structures form a complex reticular web with vertical arrangement of the main collagenous fasiculi. In the superficial layer of the hyaline cartilage the collagenous fibrillae and their fasciculi form arcade-like structures. Lacunar chondrocytes have a rough villose surface, cellular secrete is discharged as round granules through cytoplasmic membrane. Ultrastructural changes in chondrocytes are observed simultaneously with their degenerative-dystrophic changes.  相似文献   

9.
During endochondral bone formation, hypertrophic cartilage is replaced by bone or by a marrow cavity. The matrix of hypertrophic cartilage contains at least one tissue-specific component, type X collagen. Structurally type X collagen contains both a collagenous domain and a COOH-terminal non-collagenous one. However, the function(s) of this molecule have remained largely speculative. To examine the behavior and functions of type X collagen within hypertrophic cartilage, we (Chen, Q., E. Gibney, J. M. Fitch, C. Linsenmayer, T. M. Schmid, and T. F. Linsenmayer. 1990. Proc. Natl. Acad. Sci. USA. 87:8046-8050) recently devised an in vitro system in which exogenous type X collagen rapidly (15 min to several hours) moves into non-hypertrophic cartilage. There the molecule becomes associated with preexisting cartilage collagen fibrils. In the present investigation, we find that the isolated collagenous domain of type X collagen is sufficient for its association with fibrils. Furthermore, when non-hypertrophic cartilage is incubated for a longer time (overnight) with "intact" type X collagen, the molecule is found both in the matrix and inside of the chondrocytes. The properties of the matrix of such type X collagen-infiltrated cartilage become altered. Such changes include: (a) antigenic masking of type X collagen by proteoglycans; (b) loss of the permissiveness for further infiltration by type X collagen; and (c) enhanced accumulation of proteoglycans. Some of these changes are dependent on the presence of the COOH-terminal non-collagenous domain of the molecule. In fact, the isolated collagenous domain of type X collagen appears to exert an opposite effect on proteoglycan accumulation, producing a net decrease in their accumulation, particularly of the light form(s) of proteoglycans. Certain of these matrix alterations are similar to ones that have been observed to occur in vivo. This suggests that within hypertrophic cartilage type X collagen has regulatory as well as structural functions, and that these functions are achieved specifically by its two different domains.  相似文献   

10.
A Dhem  E Passelecq  E Peten 《Acta anatomica》1987,129(3):227-230
A histological and microradiological study of the cartilage calcification processes in the human thoracic column of an old man has been performed. Two different types of cartilage mineralization have been identified. The first corresponds to a calcification of the hyaline cartilage ground substance where chondrocytes are apparently intact. The second is a real mineralization of the chondrocyte lacunae in an uncalcified matrix, which we have called cartilaginous necrosis.  相似文献   

11.
Using transmission electron microscopy after cryoultramicrotomy, mineralized as well as unmineralized bone tissues and sutural cartilage were observed in neonatal mice calvaria. A good definition of osteoblasts (nucleus, membranes, organelles) and extracellular constituents (collagen fibrils, matrix vesicles, mineral substance) was obtained. The sutural zone was composed of an unmineralized cartilaginous tissue with more or less hypertrophic cells surrounded by a finely fibrillar matrix.  相似文献   

12.
《Cytotherapy》2019,21(8):856-869
BackgroundAcute or chronic injury of articular cartilage leads to localized destruction. Difficulties with interface integration between the implant and native cartilage tissue can lead to an undesirable outcome. To improve cartilage repair and interface integration, we explored the therapeutic efficacy of microporous acellular extracellular matrix (ECM) combined with adipose-derived stem cell (ASC) sheets.MethodsMethods for fabricating ASC sheets and microporous acellular ECM were explored before transplanting the constructed ASC sheet/matrix in vivo and in vitro, respectively. After the operation, distal femur samples were collected at 6 and 12 weeks for further analysis.ResultsThe decellularization process removed 90% of the DNA but retained 82.4% of glycosaminoglycans (GAGs) and 82.8% of collagen, which are the primary components of cartilage matrix. The acellular matrix/ASC sheet construct treatment in vivo showed better interface integration, cartilage regeneration, and collagenous fiber arrangement, which resembles the native structure. There was a significant increase in GAG and collagen accumulation at the zone of regeneration and integration compared to other groups. Gene expression analysis showed that the mRNA level associated with cartilage formation significantly increased in the acellular matrix/ASC sheet group (p<0.05), which is consistent with the histological analysis.DiscussionASC sheets promote interface integration between the implant and native tissue. This effect, together with the acellular matrix as a graft, is beneficial for cartilage defect repair, which suggests that acellular matrix/ASC sheet bioengineered cartilage implants may be a better approach for cartilage repair due to their enhanced integration.  相似文献   

13.
Rabbit articular chondrocytes were seeded onto three-dimensional polyglycolic acid (PGA) scaffolds and placed into a closed bioreactor system. After 4 weeks of growth, meshes were examined for cartilage formation. Gross examination revealed solid, glistening material that had the appearance of cartilaginous tissue. Histologic examination revealed cell growth and deposition of extracellular matrix throughout the mesh with a less dense central core. Alcian blue and Safranin 0 staining showed deposition of glycosaminoglycans (GAGs). Immunostaining showed positive reactivity for type II collagen and chondroitin sulfate and no reactivity for type I collagen. Biochemical analysis showed collagen and GAG values to be 15% and 25% dry weight, respectively. Our results indicate that this type of system compares well with those previously described and should be useful for producing cartilage for evaluation in a clinical setting. (c) 1995 John Wiley & Sons, Inc.  相似文献   

14.
Nasal cartilage cells from 21-day-old rat fetuses were cultured at high density in the presence of ascorbic acid and β-glycerophosphate over a 12-day period. Immediately after plating, the cells exhibited a fibroblastic morphology, lost their chondrocyte phenotype and expressed type I collagen. On day 3, clusters of enlarged polygonal cells were found. These cell clusters synthetised type II collagen and formed an alcian-blue-positive matrix. The following days, a progressive increase in the number of cells positive for type 11 collagen was noted and, on day 8, typical cartilaginous nodules were formed. These nodules increased in size and number, spreading outward, laying down a dense matrix which mineralized. Light and electron microscopy observations of cross-sections of nodules confirmed the cartilaginous nature of this tissue formed in vitro with typical chondrocytes embedded in a hyaline matrix. Furthermore, at the electron microscopic level, matrix vesicles were seen in extracellular matrix associated with the initiation of mineralization. Typical rod-like crystals were present in the intercellular spaces along the collagen fibers. These results indicated that in a specific environment, dedifferentiated chondrocytes were able to redifferentiate and to form nodular structures with morphological ultrastructure of calcified cartilage observed in vivo.  相似文献   

15.
The primary stroma of the cornea of the chick embryo consists of orthogonally arranged collagen fibrils embedded in glycosaminoglycan (GAG) produced by the epithelium under the early inductive influence of the lens. The experiments reported here were designed to test whether or not the collagen of the lens basement lamina is capable of stimulating corneal epithelium to produce primary stroma. Enzymatically isolated 5-day-old corneal epithelia were grown for 24 hr in vitro in the presence of 35SO4 or proline-3H on various substrata. Epithelia cultured on lens capsule synthesized 2.5 times as much GAG (as measured by incorporation of label into CPC precipitable material) and almost 3 times as much collagen (assayed by hot TCA extraction or collagenase sensitivity) as when cultured on Millipore filter or other noncollagenous substrata. A similar stimulatory response was observed when epithelium was combined with chemically pure chondrosarcoma collagen, NaOH-extracted lens capsule, vitreous humor, frozen-killed corneal stroma or cartilage, or tendon collagen gels; in the latter case, the magnitude of the effect can be shown to be related to concentration of the collagen in the gel. All of the collagenous substrata stimulate not only extracellular matrix production, but also polymerization of corneal-type matrix, as judged by ultrastructural criteria and by the association of more radioactivity with the tissue than the medium. Since purified chondrosarcoma collagen is as effective as lens capsule, the stimulatory effect on collagen and GAG synthesis by corneal epithelium is not specific for basal lamina (lens capsule) collagen.  相似文献   

16.
The aging processes of the arytaenoid cartilage were described. We inspected 58 arytaenoid cartilage at the age of 0 to 91 years. The arytaenoid cartilage consists mainly of hyaline cartilage, whereas the apex, colliculus and the vocal processus consist of elastic cartilage. The cartilage of larynx exhibits changes concerning the cells and the intercellular substance. Chondrocytes show fatty degeneration, the cell density decreased. During the age intercellular substance shows the following changes: albuminoid degeneration, partly loss of intercellular substance with exhibition of well visible collagen fibers, calcification and ossification. Intercellular substance shows basophilic reaction up to the 4th decennium, later the reaction becomes more and more eosinophilic.  相似文献   

17.
A concentric cylinder bioreactor has been developed to culture tissue engineered cartilage constructs under hydrodynamic loading. This bioreactor operates in a low shear stress environment, has a large growth area for construct production, allows for dynamic seeding of constructs, and provides for a uniform loading environment. Porous poly-lactic acid constructs, seeded dynamically in the bioreactor using isolated bovine chondrocytes, were cultured for 4 weeks at three seeding densities (60, 80, 100 x 10(6) cells per bioreactor) and three different shear stresses (imposed at 19, 38, and 76 rpm) to characterize the effect of chondrocyte density and hydrodynamic loading on construct growth. Construct seeding efficiency with chondrocytes is greater than 95% within 24 h. Extensive chondrocyte proliferation and matrix deposition are achieved so that after 28 days in culture, constructs from bioreactors seeded at the highest cell densities contain up to 15 x 10(6) cells, 2 mg GAG, and 3.5 mg collagen per construct and exhibit morphology similar to that of native cartilage. Bioreactors seeded with 60 million chondrocytes do not exhibit robust proliferation or matrix deposition and do not achieve morphology similar to that of native cartilage. In cultures under different steady hydrodynamic loading, the data demonstrate that higher shear stress suppresses matrix GAG deposition and encourages collagen incorporation. In contrast, under dynamic hydrodynamic loading conditions, cartilage constructs exhibit robust matrix collagen and GAG deposition. The data demonstrate that the concentric cylinder bioreactor provides a favorable hydrodynamic environment for cartilage construct growth and differentiation. Notably, construct matrix accumulation can be manipulated by hydrodynamic loading. This bioreactor is useful for fundamental studies of construct growth and to assess the significance of cell density, nutrients, and hydrodynamic loading on cartilage development. In addition, studies of cartilage tissue engineering in the well-characterized, uniform environment of the concentric cylinder bioreactor will develop important knowledge of bioprocessing parameters critical for large-scale production of engineered tissues.  相似文献   

18.
Microgravity tissue engineering   总被引:35,自引:4,他引:31  
Summary Tissue engineering studies were done using isolated cells, three-dimensional polymer scaffolds, and rotating bioreactors operated under conditions of simulated microgravity. In particular, vessel rotation speed was adjusted such that 10 mm diameter × 2 mm thick cell-polymer constructs were cultivated in a state of continuous free-fall. Feasibility was demonstrated for two different cell types: cartilage and heart. Conditions of simulated microgravity promoted the formation of cartilaginous constructs consisting of round cells, collagen and glycosaminoglycan (GAG), and cardiac tissue constructs consisting of elongated cells that contracted spontaneously and synchronously. Potential advantages of using a simulated microgravity environment for tissue engineering were demonstrated by comparing the compositions of cartilaginous constructs grown under four different in vitro culture conditions: simulated microgravity in rotating bioreactors, solid body rotation in rotating bioreactors, turbulent mixing in spinner flasks, and orbital mixing in petri dishes. Constructs grown in simulated microgravity contained the highest fractions of total regenerated tissue (as a percent of construct dry weight) and of GAG, the component required for cartilage to withstand compressive force.  相似文献   

19.
Large-sized cartilage constructs suffer from inhomogeneous extracellular matrix deposition due to insufficient nutrient availability. Computational models of nutrient consumption and tissue growth can be utilized as an efficient alternative to experimental trials to optimize the culture of large constructs; models require system-specific growth and consumption parameters. To inform models of the [bovine chondrocyte]−[agarose gel] system, total synthesis rate (matrix accumulation rate+matrix release rate) and matrix retention fractions of glycosaminoglycans (GAG), collagen, and cartilage oligomeric matrix protein (COMP) were measured either in the presence (continuous or transient) or absence of TGF-β3 supplementation. TGF-β3's influences on pyridinoline content and mechanical properties were also measured. Reversible binding kinetic parameters were characterized using computational models. Based on our recent nutrient supplementation work, we measured glucose consumption and critical glucose concentration for tissue growth to computationally simulate the culture of a human patella-sized tissue construct, reproducing the experiment of Hung et al. (2003). Transient TGF-β3 produced the highest GAG synthesis rate, highest GAG retention ratio, and the highest binding affinity; collagen synthesis was elevated in TGF-β3 supplementation groups over control, with the highest binding affinity observed in the transient supplementation group; both COMP synthesis and retention were lower than those for GAG and collagen. These results informed the modeling of GAG deposition within a large patella construct; this computational example was similar to the previous experimental results without further adjustments to modeling parameters. These results suggest that these nutrient consumption and matrix synthesis models are an attractive alternative for optimizing the culture of large-sized constructs.  相似文献   

20.
The intercellular matrices of bovine nasal cartilage, chick embryo perichordal cartilage, and chick embryo mesenchymal cells cultured in vitro have been examined by electron microscopy after staining them with Alcian Blue in salt solutions according to Scott & Dorling (1965). Matrix granules, which are typical components of cartilage at the ultrastructural level, are not visible after Alcian Blue staining and are replaced by alcianophilic rod-like particles, varying in length and width. With tissue cultures, Alcian Blue stains 40-120 A thick filaments which display an orthogonal and longitudinal relationship to collagen fibrils. We assume that cartilage matrix granules represent linear proteoglycans that are coiled as a consequence of the usual glutaraldehyde-osmium fixation. It is thought that Alcian Blue, on the other hand, contributes to the stabilization of the proteoglycans in their original structural arrangement. This stabilizing property presumably also results in the sharp visualization of fine filaments in the tissue culture matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号