首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane–cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane–cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions.  相似文献   

2.
An erythrocyte-fractionating method combining volume and subsequent density separation is described. Iron isotope (59Fe)-validation proved this combination of methods to be complementary. By deploying HbA1c as cell age marker, obtained fractions demonstrated that circulating erythrocytes lose 20% of hemoglobin and membrane by shedding vesicles. Vesiculation from older cells proved to be facilitated by the spleen. Animal studies revealed that such vesicles are rapidly removed from the circulation by scavenger receptors on Kupffer cells with phosphatidylserine acting as the principal ligand. These studies reveal the existence of an alternative pathway of erythrocyte breakdown. This means that the premortal substrate of 20% of any erythrocyte is at our disposal. As this kind of vesiculation takes place during the entire erythrocyte lifespan, loss and sometimes reutilisation of marker substances limits the usefulness of isotope studies to the first half of the erythrocyte lifespan, thereby putting the dogmatic lifespan of 120 days into question. Furthermore, these studies add to the understanding of hemoglobin A1c (HbA1c) metabolism and the origin of the wide variation of erythrocyte parameters in peripheral blood. Removal of old erythrocytes from the circulation and from donor blood may open new ways into the treatment of both bilirubin and secondary iron overload.  相似文献   

3.
Vitamin E is an essential factor to maintain biological membranes stability and its lack may affect membranes structures and reduce erythrocyte life-span. Vitamin E also play a role in the maintenance of a normal platelet aggregation. A.A. studied the effects of a ten days supply of d-1-alpha tocopherol acetate (50 mg/Kg/die) on blood viscosity in 8 rabbits. Results obtained show a significant reduction of blood viscosity on 6th day of treatment in the male rabbits and a progressive reduction of values from the 6th till the 10th day in female rabbits. The most significant decrease of blood viscosity were obtained at the lowest shear-rates, due to an increased red cells deformability to the antioxidative action of vitamin E on the erythrocytes membrane and to a reduced red cells aggregation. Such modifications on the red blood cells caratheristics can be determined by vitamin E through different mechanism: a) inhibiting red cell membrane's polyunsaturable fatty acids oxidation; b) by removal of abnormal lipids from erythrocyte membrane; c) physical and chemical stabilization of membrane's surface.  相似文献   

4.
Conditions which were optimal for the stabilization of Ca2(+)-transporting ATPase in solubilized sarcoplasmic reticulum membranes (Piku?la, S., Mullner, N., Dux, L. and Martonosi, A. (1988) J. Biol. Chem. 263, 5277-5286) were also found conducive for preservation of (Ca2+ + Mg2+)-ATPase activity in detergent-solubilized erythrocyte plasma membrane for up to 60 days. Of particular importance for the stabilization of calmodulin-stimulated Ca2(+)-dependent activity of (Ca2+ + Mg2+)-ATPase of solubilized erythrocyte plasma membrane was the presence of Ca2+ (10-20 mM), glycerol, anti-oxidants, proteinase inhibitors and appropriate detergents. Among eight detergents tested octaethylene glycol dodecyl ether, polyoxyethylene glycol(10) lauryl alcohol and polydocanol were found to be promotive in long-term preservation of the enzyme activity. Under these conditions (Ca2+ + Mg2+)-ATPase of erythrocyte ghosts became highly stable and developed microcrystalline arrays after storage for 35 days. Electron micrographs of the negatively stained and thin sectioned material indicated that crystals of purified, detergent-solubilized, lipid-stabilized erythrocyte (Ca2+ + Mg2+)-ATPase differ from those of Ca2(+)-ATPase of detergent-solubilized sarcoplasmic reticulum microsomes.  相似文献   

5.
To study the effect of sickling on dimyristoylphosphatidylcholine (DMPC)-induced vesiculation, sickle (SS) red blood cells were incubated with sonicated suspensions of DMPC under either room air or nitrogen. Like normal red cells, when sickle cells were incubated with DMPC under oxygenated conditions, incorporation of DMPC into the erythrocyte membrane occurred, followed by echinocytic shape transformation and subsequent release of membrane vesicles. On the other hand, when SS cells were induced to sickle by deoxygenation, DMPC-induced vesiculation of these cells was dramatically reduced. However, upon reoxygenation, release of vesicles from these sickle erythrocytes occurred immediately. When SS cells were incubated under hypertonic (500 mosM) and deoxygenated conditions (where hemoglobin polymerization occurs but red cells do not show the typical sickle morphology), a similar decrease in the extent of vesiculation was observed. Experiments with radiolabelled lipid vesicles indicated that incorporation of DMPC into erythrocyte membranes occurred in all cases and therefore was not the limiting factor in the reduction of vesiculation in deoxygenated SS cells. Taken together, these results indicate that cellular viscosity and membrane rigidity, both of which are influenced by hemoglobin polymerization, are two important factors in process of vesicle release from sickle erythrocytes.  相似文献   

6.
BackgroundAlthough periodic blood shortages are widespread in major Chinese cities, approximately 1x105 U of whole blood are discarded yearly because of under-collection. To reduce the wastage of acid citrate dextrose solution B (ACD-B) anticoagulated under-collected whole blood (UC-WB), this study was performed to elucidate the effect of extracellular pH and holding time on erythrocyte quality. Mannitol-adenine-phosphate (MAP) erythrocyte concentrates (UC-RBCs) were prepared with UC-WB to assess the safety and efficacy of this component.MethodsThe effect of the different extracellular pH levels and storage times on erythrocytes was assessed by fluorescent probes, SDS-PAGE electrophoresis, electron microscopy and spectroscopy. In vitro properties of 34 UC-RBCs that were prepared with UC-WB at different times after collection were analyzed and compared to normal RBCs during 35 days of storage. The results of transfusion with UC-RBCs and the incidence of adverse reactions in 49 patients were determined.Results1) Low extracellular pH levels and long storage time induced increases in RBC fluorescence polarization and mean microviscosity, changes in membrane fluidity, band 1, 2 and 3 protein expression, and erythrocyte morphology. 2) During storage for 35 days, difference in between-subjects effects of K+, hemolysis and supernatant erythrocyte membrane protein (EMP) were statistically significant (P = 0.041, 0.007 and 0.002, respectively), while the differences between these parameters in the 4 h group and comparable controls were less significant. 3) Clinical data from 49 patients confirmed that transfusions with UC-RBCs were satisfactory with no adverse reactions.ConclusionThese results suggest that it is feasible to prepare RBCs with ACD-B anticoagulated UC-WB at a minimum of 66% volume of the labeled collection. It was effective and safe to transfuse the UC-RBCs prepared within 4 h after collection and stored within 7 days. The use of UC-WB would be a welcome addition to limited blood resources in China.

Trial Registration

Chinese Clinical Trial Registry ChiCTR-TRC-13003967  相似文献   

7.
Red blood cells (RBCs) are stored up to 35–42 days at 2–6 °C in blood banks. During storage, the RBC membrane is challenged by energy depletion, decreasing pH, altered cation homeostasis, and oxidative stress, leading to several biochemical and morphological changes in RBCs and to shedding of extracellular vesicles (EVs) into the storage medium. These changes are collectively known as RBC storage lesions. EVs accumulate in stored RBC concentrates and are, thus, transfused into patients. The potency of EVs as bioactive effectors is largely acknowledged, and EVs in RBC concentrates are suspected to mediate some adverse effects of transfusion. Several studies have shown accumulation of lipid raft–associated proteins in RBC EVs during storage, whereas a comprehensive phospholipidomic study on RBCs and corresponding EVs during the clinical storage period is lacking. Our mass spectrometric and chromatographic study shows that RBCs maintain their major phospholipid (PL) content well during storage despite abundant vesiculation. The phospholipidomes were largely similar between RBCs and EVs. No accumulation of raft lipids in EVs was seen, suggesting that the primary mechanism of RBC vesiculation during storage might not be raft -based. Nonetheless, a slight tendency of EV PLs for shorter acyl chains was observed.  相似文献   

8.
Hemolysis (Kobayashi, T., Takahashi, K., Yamada, A., Nojima, S. and Inoue, K. (1983) J. Biochem. 93, 675-680) and shedding of acetylcholinesterase-enriched membrane vesicles (diameter 150-200 nm) were observed when human erythrocytes were incubated with liposomes of phosphatidylcholine which contained polyunsaturated fatty acyl chains. These events occurring on erythrocyte membrane were inhibited by radical scavengers or incorporation of alpha-tocopherol into liposomes, suggesting that lipid peroxidation is involved in the process leading to membrane vesiculation and hemolysis. The idea was supported by findings that generation of chemiluminescence, formation of thiobarbituric acid reactive substance, accumulation of conjugated diene compounds in liposomes and decrease of polyunsaturated fatty acids in liposomes occurred concomitantly during incubation. Hemolysis was also suppressed by the addition of extra liposomes, insensitive to peroxidation, or of serum albumin even after the completion of peroxidation of liposomes. These results suggest that peroxidized lipids, responsible for vesiculation and hemolysis, may be formed first in liposomes and then gradually transferred to erythrocyte membranes. The accumulation of these lipids peroxides may eventually cause membrane vesiculation followed by hemolysis.  相似文献   

9.
The property of oxygen transport function was investigated in blood which had been stored in solutions of "glugizir" and "zitroglucophosphate" and in erythrocyte concentrates gained from it on the noughth, 7th, 14th und 21st day of storage at -4 +/- 2 degrees C. The parameters of the oxygen binding function (oxygen content of erythrocytes, half time of haemoglobin saturation with oxygen, concentration of organic phosphate [2.3 diphosphoglycerate and adenosine triphosphate] and those of inorganic phosphorus were determined in erythrocytes. During storage for more than 21 days no significant differences could be detected in the property of oxygen transfer between erythrocytes of stored blood and erythrocyte concentrate, with the values for storing in zitroglucophosphate being somewhat higher. Problems of applying all components of donor blood efficiently are discussed. In performing an adequate haemotherapy with blood components the importance of a functional condition of erythrocytes and oxygen balance in the organism of the receiver should be considered. The necessity of transfusing erythrocyte concentrate in the therapy of anaemias of different genesis is emphasized and the differences in applying concentrates in different plasma solutions are referred to. By transfusing concentrates the effectiveness of hemotherapy are elevated and the rate of complications and side-effects of whole blood are diminished.  相似文献   

10.

Background

We have showed that secretory Apolipoprotein J/Clusterin (sCLU) is down-regulated in senescent, stressed or diseased red blood cells (RBCs). It was hypothesized that sCLU loss relates to RBCs vesiculation, a mechanism that removes erythrocyte membrane patches containing defective or potentially harmful components.

Methodology/Principal Findings

To investigate this issue we employed a combination of biochemical and microscopical approaches in freshly prepared RBCs or RBCs stored under standard blood bank conditions, an in vitro model system of cellular aging. We found that sCLU is effectively exocytosed in vivo during membrane vesiculation of freshly prepared RBCs. In support, the RBCs'' sCLU content was progressively reduced during RBCs ex vivo maturation and senescence under cold storage due to its selective exocytosis in membrane vesicles. A range of typical vesicular components, also involved in RBCs senescence, like Band 3, CD59, hemoglobin and carbonylated membrane proteins were found to physically interact with sCLU.

Conclusions/Significance

The maturation of RBCs is associated with a progressive loss of sCLU. We propose that sCLU is functionally involved in the disposal of oxidized/defected material through RBCs vesiculation. This process most probably takes place through sCLU interaction with RBCs membrane proteins that are implicit vesicular components. Therefore, sCLU represents a pro-survival factor acting for the postponement of the untimely clearance of RBCs.  相似文献   

11.
Human blood was stored under blood transfusion conditions for up to 10 weeks. At various times samples were removed, erythrocytes isolated and the susceptibility of the erythrocyte membrane lipids to non-lytic concentrations of phospholipase C from either Bacillus cereus or Clostridium perfringens tested. The morphology of the cells at various times and the release of microvesicles from the erythrocytes were also assessed. Initially the cells were attacked very little by the phospholipases at the concentrations chosen, but their susceptibility increased markedly after about 2 weeks, stabilised until 5 weeks, and then increased again to approach a nearly stable value after 8–10 weeks. The first rise accompanied the conversion of most of the cells to crenated and echinocytic configurations and was reversed if cells were incubated in a ‘rejuvenating’ medium designed to restore their energy supplies. The second rise occurred during the period when the cells underwent extensive microvesiculation and eventually became spherocytes: this phase involved, in particular, an increase in availability of phosphatidylethanolamine for hydrolysis by phospholipase C and was not reversed by attempts at ‘rejuvenation’. When microvesicles released from the cells were harvested and their phospholipase susceptibility compared with that of the residual cells it was found that the microvesicles were the more susceptible. These changes in phospholipase susceptibility presumably reflect subtle changes in membrane organization that occur during storage and vesiculation of erythrocytes; the possible nature of such changes is discussed.  相似文献   

12.
The effect of carbohydrates (sucrose, mannitol) and guanosine on red cell vesiculation was studied during storage of red cell concentrates (RCC) in glass bottles and plastic bags for 35 days. The course of vesicle release was followed by measuring acetylcholinesterase activity. It was found that sucrose and mannitol reduce the loss of membrane microvesicles. Preservation of red blood cells (RBC) in plastic bags results in a drastically retarded vesicle release.  相似文献   

13.
Metabolic syndrome (MS) is associated with occurrence of the many cardiovascular risk factors such as atherogenic dyslipidemia, visceral fat distribution, arterial hypertension and pro-thrombotic and pro-inflammatory status. In our study the effect of disorders that appear in MS on red-ox balance and erythrocyte cell membrane properties were estimated. The study comprised 50 patients with diagnosed MS and in 25 healthy subjects. Content of thiobarbituric acid reactive substances (TBARS) and catalase, superoxide dismutase and glutathione peroxidase activity were estimated in red blood cells. Moreover, conformation status of membrane proteins, membrane fluidity and osmotic fragility were evaluated. MS was found to manifest: (1) the increase of the concentration of TBARS in erythrocytes with no statistically significant differences in antioxidant enzymes activity, (2) disorders in the structure of erythrocyte cytoskeleton proteins, (3) the increase in membrane lipids fluidity at the depth of 5th and 12th carbon atom of fatty acid hydrocarbon chain and significantly decreased fluidity at the depth of 16th carbon atom, (4) increased erythrocyte osmotic fragility.  相似文献   

14.
Acidic and neutral sialidases (pH optimum 4.7 and 7.2, respectively) were assayed on human circulating erythrocytes during ageing. The assays were performed on intact erythrocytes and resealed erythrocyte ghost membranes. From young to senescent erythrocytes the acidic sialidase featured a 2.7-fold and 2.5-fold decrease in specific activity when measured on intact cells or resealed ghost membranes, whereas the neutral sialidase a 5-fold and 7-fold increase, respectively.The Ca2+-loading procedure was employed to mimic the vesiculation process occurring during erythrocyte ageing. Under these conditions the released vesicles displayed an elevated content of acidic sialidase, almost completely linked through a glycan phosphoinositide (GPI) anchor but no neutral sialidase activity, that was completely retained by remnant erythrocytes together with almost all the starting content of sialoglycoconjugates. The loss with vesiculation of acidic sialidase with a concomitant relative increase of neutral sialidase was more marked in young than senescent erythrocytes.The data presented suggest that during ageing erythrocytes loose acidic sialidase, and get enriched in the neutral enzyme, the vesiculation process, possibly involving GPI-anchors-rich membrane microdomains, being likely responsible for these changes. The enhanced neutral sialidase activity might account for the sialic acid loss occurring during erythrocyte ageing.  相似文献   

15.
Prostaglandin E1 is known to alter the structural and functional characteristics of red blood cells, yet, little is understood about the membrane receptors mediating this process. We therefore studied the binding of tritium-labeled prostaglandin E1 to the intact human erythrocyte membrane and demonstrated that the interaction is highly specific, rapid, saturable and reversible. Scatchard analysis of prostaglandin E1 binding to the membrane preparations showed the presence of two independent classes of prostaglandin E1 binding sites which differed in their affinity for the autacoid. The high-affinity class had Kd = 3.6 X 10(-9) M and the low-affinity class had Kd = 5.6 X 10(-5) M. The optimum pH for the binding of [3H]prostaglandin E1 to the erythrocyte membrane was found to be around 7.5 and maximum specific binding occurred at a concentration of 5 mM Mg2+ in the incubation mixture. [3H]Prostaglandin E1 bound to the membrane preparation could not be displaced by GTP or by its stable derivative Gpp[NH]p. However, prostaglandin E1 bound to the erythrocyte membrane preparation could be rapidly displaced by cyclic AMP. The IC50 (concentration of the nucleotide displacing 50% bound [3H]prostaglandin E1 from the membrane) was 75 nM. Other adenine nucleotides or cyclic GMP could not substitute for cyclic AMP. Unlike the right-side-out erythrocyte membrane, the inside-out membrane preparations do not bind [3H]prostaglandin E1. Treatment of right-side-out erythrocyte membrane preparation with neuraminidase markedly decreases the binding of prostaglandin E1. Incubation of the erythrocyte membrane preparation with trypsin resulted in total loss of the binding activity. These results indicate that the prostaglandin E1 binding sites located on the cell surface and sialic acid residues are required for prostaglandin E1 binding to the human erythrocytes. These results also indicated that the binding sites are glycoprotein in nature.  相似文献   

16.
The effect of DIDS, a specific inhibitor of anion transport in the erythrocyte membrane, on the ADP-stimulated aggregation of gel-filtered bovine blood platelets was examined. Marked inhibition of aggregation was observed at concentrations of more than 5 x 10(-5)M DIDS. On preincubation with platelets for 30 min, DIDS was more potent and significant inhibition was observed at concentrations of over 2 x 10(-7)M. Since ADP-stimulated aggregation of bovine gel-filtered platelets precedes the release reaction, these results suggest that an anion transport system in the plasma membrane is involved in platelet aggregation.  相似文献   

17.
The saline-adenine-glucose-mannitol (SAGM) solution for resuspension of red cells was evaluated on 30 blood units tested over 42 days and compared to 5 red cell concentrates collected on the conventional CPD medium. Total and extra-cellular hemoglobin, potassium, pH, ATP and DPG concentrations, osmotic fragility, schizocyte formation, and red cell antigenicity were studied through the storage period. Chromium survival studies of autologous donated red cells were performed in 10 donors. Red cell concentrates resuspended in SAGM solution showed at the 35th day of conservation at 4 degrees C, a mean storage hemolysis of only 0.66%, an ATP concentration of 67% of the initial value, a schizocyte proportion of less than 1.5%, a mean 24 hour posttransfusion viability of 88.33% and a mean red cell T 1/2 survival of 25 days 10 hours. No alteration of common blood group antigens could be found after storage of red cells for 42 days.  相似文献   

18.
In experiments on male Wistar rats, in a specially constructed computerized installation, O2 consumption by the animals in comparison with changes of hematological, biochemical, and rheological blood properties is studied after anemization—acute blood loss (12–15% of the total blood mass). An increase of the O2 consumption by the organism and tissues by 18–28% has been revealed for the first 7 days after the blood loss, in spite of a pronounced decrease of hematocrit and of the amount of erythrocytes and hemoglobin in peripheral blood by 20–25% of the initial level. There was a 5–10-fold increase of the content of immature erythrocyte forms—reticulocytes and a progressive rise of cell acidic resistance, which is characteristic of young erythrocyte forms. An increase of O2 consumption at a decrease of the blood oxygen capacity (a low hemoglobin level) seems to be due to the more efficient transport and yield of O2 to tissues. At the 3rd and 7th day after the blood loss, activity of Na,K-ATPase has been found to increase by 60% and 20%, respectively. Analysis of the erythrocyte rheological properties has shown that the maximal firmness of aggregates (Uq) and the aggregation rate (1/T) decrease progressively beginning from 3 days after the blood loss; index of deformability (Imax) turned out to be elevated by 7–11%, probably due to an increase of the cell membrane elasticity. The conclusion is made that changes of erythrocyte rheological properties are interconnected with changes of the Na,K-ATPase activity and are directed at optimization of blood circulation in large vessels and the capillary network.  相似文献   

19.
Method of high-precision microsample blood and plasma mass densitometry   总被引:2,自引:0,他引:2  
The reliability of the mechanical oscillator technique (MOT) for blood and plasma mass density measurements on small samples is quantified in this paper. Sources of measurement errors that can reduce both the accuracy and precision of density determinations include storage of plasma samples, inhomogeneity of blood samples, and density reading before adequate temperature equilibration. Measurements on fractions from identical samples and repeated samplings from test subjects under steady-state conditions revealed a 10(-2) g/l reproducibility of density readings. The mean plasma density (PD) readings did not change significantly after up to 1-wk storage at +4 degrees C or up to 2 mo storage at -20 degrees C. The variability of the PD findings increased with storage time and were generally higher with storage at -20 degrees C, compared with +4 degrees C. Densitometers of different sizes were used to evaluate rheological influences on blood density (BD) readings. Linear correlations between PD and plasma protein concentration, between BD and blood hemoglobin concentration, and between erythrocyte density and mean corpuscular hemoglobin concentration were significant (P less than 0.001). Rapid density measurements with up to 10(-2) g/l reliability on small (less than 0.1 ml) volumes of biological fluids and continuous blood densitometry can be performed with use of the MOT.  相似文献   

20.
EPR investigations on the vesiculation process of heated human erythrocytes were performed, using different fatty acid spin labels. Spectrin denaturation and vesiculation do not influence the fluidity of the lipid phase of the remaining membrane of human erythrocytes: Vesicles released differ in chemical composition as well as in the lipid fluidity of their membrane from the intact human erythrocyte membrane. A reduced cholesterol-to-phospholipid ratio and a depletion of spectrin was found. By changing the ionic concentration of the suspension medium an effect on membrane spectra and on vesicle release was established. The adamantane derivative amantadine causes fluidization of the human erythrocyte membrane and inhibits vesicle release. Based on these results, a model for the mechanism by which adamantane-like molecules could interact with membranes is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号