首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liong E  Kong SK  Au KK  Li JY  Xu GY  Lee YL  Kwok TT  Choy YM  Lee CY  Fung KP 《Life sciences》1999,65(15):PL215-PL220
Recombinant human tumour necrosis factor-alpha (rhTNF-alpha) arrested the growth and suppressed glucose uptake of mouse fibrosarcoma L929 cells in vitro. When the cells were treated with rhTNF-alpha for 24 hours, the mRNA level of glucose transporter 1 (GLUT 1), which is the only GLUT found to be present in L929 cells in our study, was suppressed in a dose-dependent manner. Since the growth of tumour cells depends mainly on glucose catabolism, our findings may indicate that rhTNF-alpha inhibits L929 cells growth by lowering the glucose transport through suppression of GLUT 1 mRNA expression in the cells.  相似文献   

2.
Ko S  Yuen WF  Fung KP  Lee CY  Choy YM  Cheng HK  Kwok TT  Kong SK 《Life sciences》2000,67(25):3113-3121
The aim of this study is to examine the effect of hyperthermia on tumour necrosis factor-alpha (TNF-alpha) resistance in L929-11E cells. L929-11E is a TNF-alpha resistant variant derived from L929 cells, a commonly used model for TNF-alpha study. Based on the results from flow cytometry and Western blotting, hyperthermia (43 degrees C, 3 h) was found to induce apoptosis, mitochondrial potential (delta psi(m)) depolarization and release of cytochrome c in L929-11E cells. Similar responses were found in L929 cells when treated with TNF-alpha. Heating at 43 degrees C for 1 h did not significantly damage the mitochondria of L929-11E cells but partially reversed their resistance to TNF-alpha. When L929-11E cells were sequentially treated with heating (43 degrees C, 1 h) and TNF-alpha, a more severe damage in mitochondria was observed. Taken together, our results indicate (1) hyperthermia induced apoptosis in L929-11E cells via mitochondrial damages in a way very similar to the action of TNF-alpha in L929 cells, (2) hyperthermia could be used to overcome TNF-alpha resistance by altering mitochondrial activities and (3) L929-11E and its parental cells provide a useful model in elucidating the signalling linkage between TNF-alpha receptor and mitochondria.  相似文献   

3.
Previous studies have demonstrated the essential role of TNF-induced reactive oxygen intermediates (ROI) in the necrosis of L929 cells. We investigated the molecular basis for the interaction of hyperthermia and TNF in these cells. Hyperthermia, both febrile (40.0-40.5 degrees C) and acute (41.5-41.8 degrees C), strongly potentiated TNF killing, and sensistization was significantly quenched by the antioxidant, BHA. The broad-spectrum caspase inhibitor, Z-VAD, has been shown to markedly increase the TNF sensitivity of L929 cells at 37 degrees C; we observed that hyperthermia would also enhance the sensitivity of L929 cells to TNF + Z- VAD and that BHA could significantly quench the response, as well. The basis for hyperthermic potentiation was unlikely thermally-increased sensitivity to ROI, as treatment with hydrogen peroxide for 24 h killed L929 cells essentially equivalently, whether incubated continuously at 37 degrees C or at 40.0-40.5 degrees C, or for 2 h at 41.5-41.8 degrees C. However, febrile and acute hyperthermia markedly increased TNF-induced production of ROI, with or without Z-VAD. Hyperthermia dramatically accelerated the onset of this production, as well as the onset of necrotic death, as determined by oxidation of dihydro-rhodamine and propidium iodide staining, respectively, both of which were significantly quenchable with BHA. We conclude that hyperthermia potentiates TNF-mediated killing in this cell model primarily by increasing the afferent, and not the efferent, phase of TNF-induced necrosis.  相似文献   

4.
Vital dye uptake and postfixation dye assays have recently been used to examine the interaction between short-term (24-48 h) exposures to the monokine, tumor necrosis factor (TNF), and hyperthermic treatments with the finding that synergistic increases in cytotoxicity occurred. However, survival measured by these short-term dye assays is not necessarily closely related to eventual loss of clonogenic capacity. Treatment-induced growth delays, delayed cytotoxic effects, or perturbations of vital dye sequestration mechanisms could result in a different measurement of surviving fraction than given by a clonogenic assay. In this study we directly compared the neutral red vital dye uptake and clonogenic survival assays and confirmed in both assays that TNF-sensitive (L-929) and TNF-resistant (EMT-6) phenotypes show greatly reduced survival when treated with combined recombinant human TNF (1.0-0.0005 micrograms/ml) and hyperthermia (1-2 h at 43 degrees C). Moreover, we confirmed that sensitization of the TNF-resistant EMT-6 cells was largely dependent on monokine treatment before hyperthermia and was reduced by the reverse sequence. The greatest sensitization of TNF-responsive L-929 cells also occurred when TNF treatment preceded heating. These results for clonogenic survival are consistent with the hypothesis that hyperthermia used in combination with TNF in vivo is more cytotoxic than TNF or hyperthermia separately.  相似文献   

5.
Yuen WF  Fung KP  Lee CY  Choy YM  Kong SK  Ko S  Kwok TT 《Life sciences》2000,67(6):725-732
Hyperthermia is a potential anti-cancer regimen but the mode of action is far from clear. Based on the flow cytometric analysis with FITC-annexin V and propidium iodide, apoptosis was found to be the major form of cell death after the treatment with hyperthermia (43 degrees C, 3 h) and/or recombinant murine tumour necrosis factor-alpha (TNF-alpha, 50 ng/ml) in L929 cells. Since mitochondria are thought to play a key role in apoptosis, experiments were done to assess their role in the hyperthermia-mediated apoptosis. Our results indicate that hyperthermia was able to depolarize the mitochondrial membrane potential (delta psi m) and release cytochrome c to the cytoplasm, in a way very similar to the action of TNF-alpha. With the use of cyclosporin A to inhibit the delta psi m dissipation, the cytotoxicity mediated by hyperthermia or TNF-alpha was suppressed. Taken together, our results indicate that hyperthermia and TNF-alpha can induce apoptosis in L929 cells and the mitochondrial dysfunction plays a key role in the cell death process.  相似文献   

6.
E A Nasonova  A V Glazunov 《Tsitologiia》1988,30(10):1273-1276
The survival of cells overheated (42 degrees C) before gamma irradiation is increased by holding them in the growth medium at 37 degrees C before treatment with hypertonic NaCl solution. The substantial synergistic effect of hyperthermia and radiation takes place when the cells are treated with a 1.5 M NaCl solution immediately after the combined action of these inactivating factors. The synergistic effect is decreased by holding the cells in the nutrient medium at 37 degrees C for 4 hours before hypertonic treatment.  相似文献   

7.
Changes in protein synthesis that occurred under the influence of heat shock (HS) in monolayer (L929) and suspension (LS) mouse cell cultures were studied. The rates of protein synthesis determined as 35S-methionine incorporations were seen reduced from the initial level up to 40-60 and 6-13% after HS at 42 and 44 degrees C, respectively. Simultaneously the rate of actin and tubulin syntheses decreased, the decrease being more pronounced in LS cells. According to electrophoresis and autoradiography data, after hyperthermia both the cell cultures were able to synthesize heat shock proteins (HSP), primarily HSP70. After a 40 min HS towards L929 and LS cells at 43 degrees C, the shares of their HSP70 bands in the total label loaded on the gel constituted, resp., 8.8 and 5.4%. The data suggest that L929 cells, with their synthetic activity lower than in LS cells, appear more resistant to HS and are able eventually to synthesize larger amounts of HSP70, compared to the latter.  相似文献   

8.
The effects of combined hyperthermia and X-irradiation were studied in the skin of the mouse ear. Ears were heated for 1 hour by immersion in a waterbath at temperatures ranging from 37 degrees C--43 degrees C. These heat treatments had little visible effect alone, but when combined with X-rays, enhanced the radiation response. Enhancement depended on the degree of heating. When heat was given immediately after X-rays, the radiation dose to cause a given skin reaction had to be reduced by about 10 per cent for 37 degrees C and about 40 per cent of 43 degrees C. The timing and sequence of the two treatments were important. Heat after X-rays was less effective than heat before X-rays. When heat followed X-rays, the enhancing effect was lost completely if the interval exceeded 4 hours. When heat preceded X-rays, the effect was lost more slowly, depending on temperature. The implications of this for the treatment of cancer by combined therapy are discussed.  相似文献   

9.
Preliminary incubation of logarithmically growing HeLa cells with FUdR decreases an inhibitory effect of hyperthermia (43 degrees C, 1 hour) on DNA synthesis. The hyperthermia alone inhibits DNA synthesis considerably: the label in acid-precipitable material accounts for 30% of control level. Preliminary incubation of the cells with FUdR (10(-6)) for 24 or 6 hours (plus 18 hours in fresh medium) decreases the effect: the label yields account for 50 or 90% of the respective control levels. A molecular weight of nascent DNA synthetized in the cells after hyperthermia or incubation with FUdR is lower than the control one but it increases rapidly during postincubation. Nucleoid of cells treated with FUdR has a sedimentation velocity which exceeds that of the control cells by more than 25%. Preliminary incubation with FUdR sensitizes the cells to hyperthermia. The effect is not believed to be associated with cells synchronization since the treatment of the cells with FUdR for 2 or 6 hours, when FUdR itself does not exert its toxic effect, brings about sensibilization of cells to hyperthermia. It is suggested that modification of the cell viability and DNA replication are related to some changes of chromatine structure induced by FUdR.  相似文献   

10.
The cytotoxic lymphokine, lymphotoxin (LT), has been shown to possess antitumor effect in vitro and in vivo. We examined the effect of the combination of partially purified LT with anti-cancer drugs and elevated temperatures on mouse transformed fibroblast cell line, L-929, and two human carcinoma of the cervix cell lines, HeLa and ME180. The cells were treated for 7 hr with Adriamycin, cisplatin, or bleomycin. These cells were then incubated for 24 hr in the presence of LT. At the end of the incubation period, cytotoxicity was measured by the neutral red dye uptake assay. There was 10- to 47-fold potentiation of cytotoxicity of LT on L-929 cells. The potentiation of cytotoxicity on human carcinoma of cervix cell lines ranged from 3- to 23-fold. L-929 cells and ME180 cells were incubated for 7 hr at 40 or 42 degrees C followed by 24 hr of incubation in the presence of LT. The elevated temperature treatment also enhanced (5- to 9-fold) the cytotoxic effect of LT. DNA, RNA, and protein syntheses of the ME180 cells was measured following incubation at 42 degrees C. It was observed that all three parameters were suppressed by incubation at this temperature. It was, therefore, possible that the repair of LT damaged cells was hampered by the elevated temperature treatment. It is suggested that LT may have a potential as an anti-tumor agent in combination with selected therapeutic drugs and hyperthermia.  相似文献   

11.
The release of cisplatin (CDDP) encapsulated in temperature-sensitive unilamellar liposomes to murine SCC VII carcinoma by localized hyperthermia and the effects of the treatment on tumor growth were studied. A transition temperature of the temperature-sensitive liposomes containing cisplatin (LIP-CDDP) was 41 degrees C. Twenty-four hours after injection of LIP-CDDP, the heated tumors (42 degrees C, 60 min) contained 3.3 times more CDDP than the unheated tumors receiving free CDDP. Although the uptake of liposome-associated CDDP by liver was approximately threefold greater at 1.5 h after injection than uptake of free CDDP, it decreased about 50% over a 24-h period. No difference in uptake of the two forms of CDDP by kidney was observed. The combination of LIP-CDDP and localized heating at 42 or 43 degrees C was more effective relative to the amount of CDDP in delaying tumor growth than that of free CDDP and hyperthermia. Treatment with LIP-CDDP plus local heating resulted in a dose-modifying factor of 5.3 when compared with free CDDP and no hyperthermia. The dose-modifying factor was 2.8 when treatment with LIP-CDDP and heat was compared with treatment with free CDDP and heat. Thus CDDP could be released selectively from the temperature-sensitive liposomes by heat and resulted in both a greater uptake of the drug and a delay in tumor growth.  相似文献   

12.
Normal mouse B lymphocytes were exposed to water-bath hyperthermia in vitro and examined for susceptibility to antibody-complement (Ab-C) cytotoxicity. Enhancement of Ab-C cytotoxicity was observed during heat treatment at 42 or 43 degrees C. Sensitivity to Ab-C cytotoxicity returned to normal levels by 2-3 hr post exposure to 42 degrees C. No such recovery was observed when cells were preheated at 43 degrees C for 40 min. The mechanism responsible for heat-induced enhancement of Ab-C cytotoxicity may be related to the way heat affects the redistribution of membrane-bound antigen-antibody (Ag-Ab) complexes. To investigate this possibility, cells were preheated at 37, 42, or 43 degrees C. The Ab-C assay was then performed at 37 degrees C immediately or 2.5 hr after hyperthermia. The distribution of Ag-Ab complexes was evaluated by immunofluorescence. A direct correlation was found between the hyperthermic enhancement of Ab-C cytotoxicity and the hyperthermic inhibition of capping, a process where membrane-bound Ag-Ab complexes coalesce into a polar cap on the cell surface. Sensitivity to Ab-C cytotoxicity returned to normal levels when cells restored the ability to cap Ag-Ab complexes following 42 degrees C hyperthermia. Cells heated at 43 degrees C were still sensitive to Ab-C cytotoxicity and did not recover the capping ability even 2.5 hr after heat treatment.  相似文献   

13.
Previous reports have suggested that the potentiation of cellular radiation sensitivity by hyperthermia may be due to its inhibition of the repair of single-strand breaks in DNA. Such inhibition could result in increased numbers of unrejoined breaks at long times following irradiation, lesions that are presumed to be lethal to the cell. As a test of this hypothesis, the amounts of residual strand-break damage in cells following combined hyperthermia and ionizing radiation were measured. The results show that hyperthermia does significantly enhance the relative number of unrejoined strand breaks as measured by the technique of alkaline elution and that the degree of enhancement is dependent on both the temperature and duration of the hyperthermia treatment. For example, compared to unheated cells, the proportion of unrejoined breaks measured 8 hr after irradiation was increased by a factor of 1.5 in cells that were treated for 30 min at 43 degrees C, by a factor of 6 for cells treated for 30 min at 45 degrees C, and by a factor of 4 for cells treated at 43 degrees C for 2 hr. In experiments in which the sequence of heat and irradiation were varied, a high degree of correlation was observed between the resulting level of cell killing and the relative numbers of unrejoined strand breaks. The greatest effects on both of these parameters were observed in those protocols in which the irradiation was delivered either during, just before, or just after the heat treatment.  相似文献   

14.
The effects of hyperthermia (41-43 degrees C) on the membrane potential (calculated from the transmembrane distribution of [3H]tetraphenylphosphonium) and Na+ transport of Chinese hamster V79 fibroblasts were studied. At 41 degrees C, hyperthermia induced a membrane hyperpolarization of log phase cells (5 to 26 mV) that was reversible upon returning to 37 degrees C. The hyperpolarization was inhibited 50% by 1 mM ouabain or 0.25 mM amiloride, an inhibitor of Na+:H+ exchange. Shifting temperature to 41 degrees C increased ouabain-sensitive Rb+ uptake indicating activation of the electrogenic Na+ pump. At 43 degrees C for 60 min, the membrane potential of log phase cells depolarized (20-35 mV). Parallel studies demonstrated enhanced Na+ uptake at 41 degrees C only in the presence of ouabain. At 43 degrees C, Na+ uptake was increased relative to controls with or without ouabain present. At both 41 and 43 degrees C, 0.25 mM amiloride inhibited heat-stimulated Na+ uptake. Na+ efflux was enhanced at 41 degrees C in a process inhibited by ouabain. Thus, one consequence of heat treatment at 41 degrees C is activation of Na+:H+ exchange with the resultant increase in cytosolic [Na+] activating the electrogenic Na+ pump. At temperatures greater than or equal to 43 degrees C, the Na+ pump is inhibited.  相似文献   

15.
The effect of hyperthermia on radiation-induced carcinogenesis   总被引:1,自引:0,他引:1  
Ten groups of mice were exposed to either a single (30 Gy) or multiple (six fractions of 6 Gy) X-ray doses to the leg. Eight of these groups had the irradiated leg made hyperthermic for 45 min immediately following the X irradiation to temperatures of 37 to 43 degrees C. Eight control groups had their legs made hyperthermic with a single exposure or six exposures to heat as the only treatment. In mice exposed to radiation only, the postexposure subcutaneous temperature was 36.0 +/- 1.1 degrees C. Hyperthermia alone was not carcinogenic. At none of the hyperthermic temperatures was the incidence of tumors in the treated leg different from that induced by X rays alone. The incidence of tumors developing in anatomic sites other than the treated leg was decreased in mice where the leg was exposed to hyperthermia compared to mice where the leg was irradiated. A systemic effect of local hyperthermia is suggested to account for this observation. In mice given single X-ray doses and hyperthermia, temperatures of 37, 39, or 41 degrees C did not influence radiation damage as measured by the acute skin reactions. A hyperthermic temperature of 43 degrees C potentiated the acute radiation reaction (thermal enhancement factor 1.1). In the group subjected to hyperthermic temperatures of 37 or 39 degrees C and X rays given in six fractions, the skin reaction was no different from that of the group receiving X rays alone. Hyperthermic temperatures of 41 and 43 degrees C resulted in a thermal enhancement of 1.16 and 1.36 for the acute skin reactions. From Day 50 to Day 600 after treatment, the skin reactions showed regular fluctuations with a 150-day periodicity. Following a fractionated schedule of combined hyperthermia and X rays, late damage to the leg was less than that following X irradiation alone. Mice subjected to X rays and hyperthermic temperatures of 41 and 43 degrees C had a lower median survival time than the mice treated with hyperthermia alone. This effect was not associated with tumor incidence.  相似文献   

16.
The intracellular levels of poly(ADP-ribose) in cultured mouse cells were increased in response to hyperthermic treatment (43 degrees C). When hyperthermia was combined with other stressful treatments such as with ethanol and/or an alkylating agent, a dramatic synergistic increase in polymer levels was observed. The effect of hyperthermia did not appear to be related to the presence of DNA strand breaks. A possible involvement of poly(ADP-ribose) metabolism in the general cellular response to environmental stress is suggested.  相似文献   

17.
Effects of methylglyoxal bis(guanylhydrazone) (MGBG) on tumour and skin responses to hyperthermia (42 degrees C) were examined in C3H mice. MGBG (50 mg/kg) was administered intraperitoneally to mice 4 hours before hyperthermic treatment. The tumour (FM3A) growth time was elongated by an amount dependent on the exposure time of treatment at 42 degrees C (60, 90 and 120 min). Pre-treatment of mice with MGBG (50 mg/kg, i.p.) apparently further lengthened the tumour growth time after treatment at 42 degrees C. No significant damage of foot skin was caused by 42 degrees C hyperthermia. Pre-treatment with MGBG did not make the foot skin susceptible to the heating. From these findings, it can be considered that MGBG or related less-toxic compounds may have a clinical advantage for the mild (42 degrees C) hyperthermic treatment in cancer therapy.  相似文献   

18.
Ohtsubo, T., Igawa, H., Saito, T., Matsumoto, H., Park, H. J., Song, C. W., Kano, E. and Saito, H. Enhancement of Cell Killing by Induction of Apoptosis after Treatment with Mild Hyperthermia at 42 degrees C and Cisplatin. Radiat. Res. 156, 103-109 (2001).We examined the interactive effects of cisplatin (1.0 microg/ml) combined with hyperthermia on cell killing and on the induction of apoptosis in IMC-3 human maxillary carcinoma cells. The cytotoxic effects of hyperthermia on IMC-3 cells at 44 degrees C were greater than at 42 degrees C, as has been reported for many other cells. The induction of apoptosis, DNA fragmentation and poly(ADP-ribose) polymerase cleavage were greater after hyperthermia at 44 degrees C for 30 min compared with treatment at 42 degrees C for 105 min, even though both of these heat doses were isoeffective in reducing cell survival to 50%. Treatment with cisplatin at 37 degrees C for up to 120 min did not result in cytotoxicity or the induction of apoptosis. The enhancement ratio for treatment with cisplatin at 42 degrees C was greater than that at 44 degrees C. More apoptosis was induced after the treatment with cisplatin at 42 degrees C compared to treatment with cisplatin at 44 degrees C. Taking these findings together, the combination of cisplatin and hyperthermia at 42 degrees C appeared to be more effective than cisplatin with hyperthermia at 44 degrees C for the induction of apoptosis in IMC-3 cells.  相似文献   

19.
D A Averill  C Su 《Radiation research》1999,151(6):694-702
Development of multidrug resistance to anticancer agents is a major limitation for the success of cancer chemotherapy. The chemosensitizer verapamil increases intracellular accumulation of drugs such as adriamycin in certain multidrug-resistant cell lines. When combined with verapamil, hyperthermia should be able to alter membrane permeability to adriamycin and to enhance the cytotoxicity of the drug. Verapamil increased the cytotoxicity of adriamycin in multidrug-resistant Chinese hamster ovary cells (CH(R)C5) but not in drug-sensitive cells (AuxB1). Hyperthermia (42 degrees C) alone clearly increased the cytotoxicity of adriamycin in AuxB1 cells. There was also a small increase in CH(R)C5 cells at 42 and 43 degrees C. In drug-resistant cells, the cytotoxicity of adriamycin increased considerably when verapamil was combined with heat. This effect was dependent on temperature and increased with time of incubation. At 37 degrees C, verapamil increased the uptake of adriamycin in CH(R)C5 cells, while drug efflux decreased. When verapamil was combined with hyperthermia, drug efflux decreased even further. These results led to an overall increase in intracellular accumulation of the drug. In drug-sensitive cells, hyperthermia increased both the uptake and efflux of adriamycin, but verapamil had no effect. Verapamil plus heat increased the cytotoxicity of adriamycin in drug-resistant cells, and this was accompanied by altered permeability of the membrane to the drug. Hyperthermia combined with verapamil could be beneficial by increasing the effectiveness of adriamycin in the elimination of multidrug-resistant cells in a localized target region.  相似文献   

20.
Effects of hyperthermia (42.5 degrees C) and gamma radiation (30 Gy) on ADP-ribosyl transferase, NAD+, and ATP pools in human mononuclear leukocytes have been investigated. It was found that the gamma-ray activation level of the enzyme was not influenced by this hyperthermia for 45 min. Following deprivation of ATP synthesis by 2,4-dinitrophenol, an uncoupler of the oxidative phosphorylation, and omitting glucose from the culture medium, the NAD+ pool was reduced to about 60% of control value. The potentiation of ATP production by exogenously supplied adenosine was reduced after a combined treatment of the cells with hyperthermia and gamma radiation. Mitochondrial and endoplasmic changes within the mononuclear leukocytes were also observed. Based on these findings a model for the hyperthermia effect is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号