首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The hypersensitive resistance to tomato spotted wilt virus (TSWV) in pepper is determined by a single dominant gene (resistant allele: Tsw) in several Capsicum chinense genotypes. In order to facilitate the selection for this resistance, four RAPD (among 250 10-mer primers tested) were found linked to the Tsw locus using the bulked segregant analysis and 153 F2 individuals. A close RAPD marker was converted into a codominant cleaved amplified polymorphic sequence (CAPS) using specific PCR primers and restriction enzymes. This CAPS marker is tightly linked to Tsw (0.9 +/- 0.6 cM) and is helpful for marker-assisted selection in a wide range of genetic intercrosses.  相似文献   

2.
A viral genetic system was used to map the determinants of the ability of Tomato spotted wilt virus (TSWV) to overcome the R gene (Sw-5) in tomato and the resistance conferred by the nucleocapsid gene of TSWV (N gene) in tobacco. A complete set of reassortant genotypes was generated from TSWV isolates A and D. TSWV-A was able to overcome the Sw-5 gene in tomato and the TSWV N gene in tobacco, whereas TSWV-D was repressed by both forms of resistance. The ability to overcome both forms of resistance was associated with the M RNA segment of TSWV-A (M(A)). Overcoming the Sw-5 gene was linked solely to the presence of M(A), and the ability of M(A) to overcome the TSWV N gene was modified by the L RNA and the S RNA of TSWV-A, which is consistent with previous reports that suggest that the nucleocapsid gene is not the primary determinant for overcoming the nucleocapsid-mediated resistance. Sequence analysis of the M RNA segment of TSWV-A, -D, and the type isolate BR-01 revealed multiple differences in the coding and noncoding regions, which prevented identification of the resistance-breaking nucleotide sequences.  相似文献   

3.
4.
Comparative genetics of disease resistance within the solanaceae   总被引:21,自引:0,他引:21  
Grube RC  Radwanski ER  Jahn M 《Genetics》2000,155(2):873-887
Genomic positions of phenotypically defined disease resistance genes (R genes) and R gene homologues were analyzed in three solanaceous crop genera, Lycopersicon (tomato), Solanum (potato), and Capsicum (pepper). R genes occurred at corresponding positions in two or more genomes more frequently than expected by chance; however, in only two cases, both involving Phytophthora spp., did genes at corresponding positions have specificity for closely related pathogen taxa. In contrast, resistances to Globodera spp., potato virus Y, tobacco mosaic virus, and tomato spotted wilt virus were mapped in two or more genera and did not occur in corresponding positions. Without exception, pepper homologues of the cloned R genes Sw-5, N, Pto, Prf, and I2 were found in syntenous positions in other solanaceous genomes and in some cases also mapped to additional positions near phenotypically defined solanaceous R genes. This detailed analysis and synthesis of all available data for solanaceous R genes suggests a working hypothesis regarding the evolution of R genes. Specifically, while the taxonomic specificity of host R genes may be evolving rapidly, general functions of R alleles (e.g., initiation of resistance response) may be conserved at homologous loci in related plant genera.  相似文献   

5.
We found that the Sw-5 gene confers resistance to one of the Polish isolates of tomato spotted wilt virus (TSWV). A series of tomato breeding accessions was analysed along with standards of resistance and susceptibility to TSWV. The presence of the Sw-5 gene was determined using the available PCR marker. Subsequently plants from these accessions were grown in the presence of the TSWV isolate from Poland. Some of them developed severe symptoms of the TSWV disease. Expression of the virus proteins was also assayed in tissues of the investigated plants. We found general agreement between either lack or presence of the disease symptoms, virus proteins and resistance gene. Some observed discrepancies of these data are also discussed. Our results indicate that marker-assisted selection can be used for breeding of the TSWV-resistant tomato in Poland.  相似文献   

6.
Sw-5b is an effective resistance gene used widely in tomato to control tomato spotted wilt virus (TSWV), which causes severe losses in crops worldwide. Sw-5b confers resistance by recognizing a 21-amino-acid peptide region of the viral movement protein NSm (NSm21, amino acids 115–135). However, C118Y or T120N mutation within this peptide region of NSm has given rise to field resistance-breaking (RB) TSWV isolates. To investigate the potential ability of TSWV to break Sw-5b-mediated resistance, we mutagenized each amino acid on NSm21 and determined which amino acid mutations would evade Sw-5b recognition. Among all alanine-scan mutants, NSmP119A, NSmW121A, NSmD122A, NSmR124A, and NSmQ126A failed to induce a hypersensitive response (HR) when coexpressed with Sw-5b in Nicotiana benthamiana leaves. TSWV with the NSmP119A, NSmW121A, or NSmQ126A mutation was defective in viral cell-to-cell movement and systemic infection, while TSWV carrying the NSmD122A or NSmR124A mutation was not only able to infect wild-type N. benthamiana plants systemically but also able to break Sw-5b-mediated resistance and establish systemic infection on Sw-5b-transgenic N. benthamiana plants. Two improved mutants, Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q, which we recently engineered and which provide effective resistance against field RB isolates carrying NSmC118Y or NSmT120N mutations, recognized all NSm21 alanine-substitution mutants and conferred effective resistance against new experimental RB TSWV with the NSmD122A or NSmR124A mutation. Collectively, we determined the key residues of NSm for Sw-5b recognition, investigated their potential RB ability, and demonstrated that the improved Sw-5b mutants could provide effective resistance to both field and potential RB TSWV isolates.  相似文献   

7.
The Sw-5 locus confers dominant resistance to tomato spotted wilt virus (TSWV). To map the location and facilitate the identification of markers linked to Sw-5 we developed a pair of near-isogenic lines (NILs) and an F2 Lycopersicon esculentum x L. pennellii population segregating for resistance to TSWV. DNA from the NILs was analyzed using 748 random 10-mer oligonucleotides to discern linked molecular markers using a random amplified polymorphic DNA (RAPD) approach. One random primer (GAGCACGGGA) was found to produce a RAPD band of about 2200 bp that demonstrates linkage to Sw-5. Data from co-segregation of resistance and restriction fragment length polymorphisms (RFLPs) in a F2 interspecific population position Sw-5 between the markers CT71 and CT220 near the telomere of the long arm of chromosome 9.  相似文献   

8.
We used a positional cloning approach to isolate the Sw-5 disease resistance locus of tomato. Complementation experiments with overlapping cosmid clones enabled us to demonstrate that Sw-5 is a single gene locus capable of recognizing several tospovirus isolates and species. Analysis of the predicted Sw-5 protein suggests that it is a cytoplasmic protein, with a potential nucleotide binding site (NBS) domain and a C-terminal end consisting of leucine-rich repeats (LRRs). Based on its structural features, Sw-5 belongs to the class of NBS-LRR resistance genes that includes the tomato Mi, 12, and Prf genes; the Arabidopsis RPM1 gene; and the plant potato virus X resistance gene Rx. The overall similarity between the Sw-5 and Mi proteins of tomato suggests that a shared or comparable signal transduction pathway leads to both virus and nematode resistance in tomato. The similarity also supports the hypothesis that Sw-5 provides resistance via a hypersensitive response. Sw-5 is a member of a loosely clustered gene family in the telomeric region of chromosome 9. Members of this family map to other regions of chromosome 9 and also to chromosome 12, where several fungal, virus, and nematode genes have been mapped, suggesting that paralogs of Sw-5 may have evolved to provide different resistance specificities.  相似文献   

9.
The nonstructural protein NSm of tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant of the tomato single dominant Sw-5 resistance gene. Although Sw-5 effectiveness has been shown for most TSWV isolates, the emergence of resistance-breaking (RB) isolates has been observed. It is strongly associated with two point mutations (C118Y or T120N) in the NSm viral protein. TSWV-like symptoms were observed in tomato crop cultivars (+Sw-5) in the Baja California peninsula, Mexico, and molecular methods confirmed the presence of TSWV. Sequence analysis of the NSm 118–120 motif and three-dimensional protein modelling exhibited a noncanonical C118F substitution in seven isolates, suggesting that this substitution could emulate the C118Y-related RB phenotype. Furthermore, phylogenetic and molecular analysis of the full-length genome (TSWV-MX) revealed its reassortment-related evolution and confirmed that putative RB-related features are restricted to the NSm protein. Biological and mutational NSm 118 residue assays in tomato (+Sw-5) confirmed the RB nature of TSWV-MX isolate, and the F118 residue plays a critical role in the RB phenotype. The discovery of a novel TSWV-RB Mexican isolate with the presence of C118F substitution highlights a not previously described viral adaptation in the genus Orthotospovirus, and hence, the necessity of further crop monitoring to alert the establishment of novel RB isolates in cultivated tomatoes.  相似文献   

10.
Bulked segregant analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to the Sw-5 gene for resistance to tomato spotted wilt virus (TSWV) in tomato. Using two pools of phenotyped individuals from one segregating population, we identified four RAPD markers linked to the gene of interest. Two of these appeared tightly linked to Sw-5, whereas another, linked in repulsion phase, enabled the identification of heterozygous and susceptible plants. After linkage analysis of an F2 population, the RAPD markers were shown to be linked to Sw-5 within a distance of 10.5 cM. One of the RAPD markers close to Sw-5 was used to develop a SCAR (sequence characterized amplified region) marker. Another RAPD marker was stabilized into a pseudo-SCAR marker by enhancing the specificity of its primer sequence without cloning and sequencing. RAPD markers were mapped to chromosome 9 on the RFLP tomato map developed by Tanksley et al. (1992). The analysis of 13 F3 families and eight BC2 populations segregating for resistance to TSWV confirmed the linkage of the RAPD markers found. These markers are presently being used in marker-assisted plant breeding.  相似文献   

11.
Resistance conferred by the Tsw locus from Capsicum chinense against Tomato spotted wilt virus (TSWV) has been widely used in breeding programmes. Nevertheless, this resistance depends on inoculation conditions, and isolates able to overcome it have already been detected. In this work 29 accessions of several Capsicum species have been mechanically inoculated with TSWV to identify new sources of resistance. Five accessions showed variable percentages of resistant plants, two of which did not show local lesions on inoculated leaves, suggesting that the response was not mediated through hypersensitivity. Two of these accessions also had a remarkable reduced viral accumulation compared to susceptible control. ECU‐973., a C. chinense accession, showed the best performance against TSWV, with 100% resistant plants. This response was confirmed after mechanical inoculation with three different TSWV isolates. The resistance was maintained when the accession was inoculated with TSWV using a high pressure of viruliferous thrips. These results open new possibilities in the development of a durable resistance to TSWV in pepper.  相似文献   

12.
In glasshouse tests, sap from plants infected with 15 different isolates of tomato spotted wilt tospovirus (TSWV) from three Australian states was inoculated to nine genotypes of tomato carrying TSWV resistance gene Sw-5 or one of its alleles. A further two resistant tomato genotypes were inoculated with four isolates each. The normal response in resistant genotypes was development of necrotic local lesions in inoculated leaves without systemic invasion, but 22/752 plants also developed systemic reactions in addition to local hypersensitive ones. Using cultures from two of these systemically infected plants and following four cycles of subculture in TSWV resistant tomato plants, two isolates were obtained that gave susceptible type systemic reactions but no necrotic spots in inoculated leaves of resistant tomatoes. When these two isolates, DaWA-1d and ToTAS-1d, were maintained by repeated subculture for 10 successive cycles in Nicotiana glutinosa or a susceptible tomato genotype, they still induced susceptible type systemic reactions when inoculated to resistant tomato plants. They were therefore stable resistance breaking isolates as regards overcoming gene Sw-5. When resistance-breaking isolate DaWA-1ld multiplied together with original isolate DaWA-l in susceptible tomato, it was fully competitive with the original isolate. However, when DaWA-ld and ToTAS-ld were inoculated to TSWV resistant Lycopersicon peruvianum lines PI 128660R and PI 128660S and to TSWV resistant Capsicum chinense lines PI 152225, PI 159236 and AVRDC CO0943, they failed to overcome the resistance, producing only necrotic local lesions without systemic infection. Thus, although the ease of selection, stability and competitive ability of resistance breaking isolates of TSWV is cause for concern, L. peruvianum and C. chinense lines are available which are effective against them. The effectiveness of the resistance to TSWV in nine tomato genotypes was examined in a field experiment. Spread was substantial in the susceptible control genotype infecting 42% of plants. Resistance was ineffective in cv. Bronze Rebel, 26% of plants developing infection. In contrast, it held up well in the other eight resistant genotypes with only 1–3 or no plants of each becoming infected. Accumulated numbers of Thrips tabaci, Frankliniella occidentalis and F. schultzei were closely correlated with TSWV spread.  相似文献   

13.
Tomato spotted wilt virus (TSWV) causes serious diseases of many economically important crops. Disease control has been achieved by breeding tomato and pepper cultivars with the resistance genes Sw‐5 and Tsw, respectively. However, TSWV isolates overcoming these genetic resistances have appeared in several countries. To evaluate the risk of spread of these resistance‐breaking isolates, we tested their ability of transmission by the main vector of TSWV, the thrips Frankliniella occidentalis. We compared the transmission rate by thrips of six TSWV isolates of different biotype (able or unable to overcome this resistance in pepper and tomato), and with divergent genotype (A and B). Our results indicate that the transmission rate was related to the amount of virus accumulated in thrips but not to virus accumulation in the source plants on which thrips acquired the virus. No correlation was found between transmission efficiency by thrips and the genotype or between transmission efficiency and the ability of overcoming both resistances. This result suggests that resistance‐breaking isolates have the same potential to be transmitted as the isolates unable to infect resistant tomato and pepper cultivars.  相似文献   

14.
The Sw-5 gene is a dominantly inherited resistance gene in tomato and functional against a number of tospovirus species. The gene has been mapped on chromosome 9, tightly linked to RFLP markers CT220 and SCAR421. To analyse the Sw-5 locus, a BAC genomic library was constructed of tomato cv. Stevens, homozygous for the Sw-5 gene. The library comprised 18 816 clones with an average insert size of 100 kb, corresponding to two genome equivalents. The library was screened by PCR using primers designed for the CT220 and SCAR421 sequences, resulting in a 250 kb contig of known orientation on the long arm of chromosome 9. Using degenerate primers based on homologous sequences in the nucleotide binding site of resistance gene sequences, three discrete PCR fragments obtained from this contig were cloned and sequenced. Analysis of these fragments revealed a high similarity with numerous resistance genes or resistance gene like sequences. The present data indicate that at least three different resistance gene candidate (RGC) sequences are present in the vicinity of marker CT220, supporting the view that a resistance gene family may be responsible for the unusually broad resistance to tospoviruses conferred by the Sw-5 locus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The tomato as both a fresh consumption and industrial product is one of the most profitable vegetables and has a large cultivation area in the world. Parallel to intense production activities, Tomato Spotted Wilt Virus (TSWV), like viral diseases, results in significant economic losses every year. Use of resistant cultivars is the most efficient and environmental-friendly method of fighting against these diseases. This study was conducted to develop new tomato genetic resources resistant to TSWV because of the Sw-5 resistance breaking (RB) isolates that were determined in tomato cultivation areas. In this study, a total of 40 tomato materials including 15 lines, 9 commercial varieties and 16 wild genotypes were by tested with molecular and biological testing methods. Mechanical inoculation method was used for biological testing and SCAR marker was used in molecular analysis. S. penellii, S. chmielewski, S. habrochaites, S. peruvianum and S. sitiens, LA0716, LA1028, LA1777, LA2744 and LA4110 genotypes were found as resistant against breaking isolates of Tomato Spotted Wilt Virus. These genotypes may be a good resistance source for the future breeding studies in tomato.  相似文献   

16.
17.
The dominant gene Pvr7 from Capsicum chinense Jacq. ’PI159236’ confers resistance to the pepper mottle potyvirus (PepMoV) Florida (V1182) strain. This gene is tightly linked to the dominant potyvirus resistance gene Pvr4 with observed recombination frequencies of 0.012 to 0.016. A cleaved amplified polymorphic sequence (CAPS) marker linked to Pvr4 was used to localize Pvr4 and, by extension, Pvr7, to linkage group 10 on an interspecific map of pepper. Our results indicated that Pvr4, Pvr7, and Tsw, a gene conferring resistance to tomato spotted wilt virus, comprise the first identified cluster of dominant disease resistance genes in Capsicum L. This position does not correspond to the locations of dominant potyvirus resistance genes in potato or to the positions of any other mapped solanaceous resistance genes or resistance gene homologues. Received: 20 September 1999 / Accepted: 21 March 2000  相似文献   

18.
Resistance against both Potato virus Y (PVY) and Tobacco etch virus (TEV) was identified in the wild tomato relative Lycopersicon hirsutum PI247087. Analysis of the segregation ratio in F(2)/F(3) and BC(1) interspecific progenies indicated that a single recessive gene, or two very tightly linked recessive loci, are involved in resistance to both potyviruses. This locus was named pot-1. Using amplified fragment length polymorphism markers and a set of L. hirsutum introgression lines, pot-1 was mapped to the short arm of tomato chromosome 3, in the vicinity of the recessive py-1 locus for resistance to corky root rot. Because of the occurrence of phenotypically similar genes in pepper ( Capsicum spp.), the comparative genetics of resistance to potyviruses between tomato and pepper was investigated. Unlike most of the comparative genetic studies on resistance genes, pot-1 was tightly flanked by the same restriction fragment length polymorphism (RFLP) markers than the pvr2/pvr5 locus for resistance to PVY and TEV from pepper. These results may indicate that recessive resistance genes against potyviruses evolve less rapidly than the majority of the dominant genes cloned so far, and consequently may belong to a different family of resistance genes.  相似文献   

19.
Two yeast artificial chromosomes (YACs) containing genomic DNA from tomato have been isolated using CT220, an RFLP marker which is tightly linked to the tomato spotted wilt virus resistance gene, Sw-5. High-resolution mapping of the YAC ends and internal YAC probes demonstrated that one of the YAC clones, TY257 (400?kb), spans Sw-5. By chromosome walking in a cosmid library, the position of Sw-5 has been delimited within the YAC to a maximal chromosomal segment of 100?kb, spanned by nine overlapping cosmid clones.  相似文献   

20.
This study was undertaken to develop tomato plants with broad resistanceto tospoviruses which are a major limiting factor to tomato productionworldwide. A nontransgenic tomato line Stevens-Rodale (S-R), six transgenictomato lines expressing the nucleocapsid (N) protein gene of the lettuceisolate of tomato spotted wilt virus (TSWV-BL), and progeny of the crosses between S-Rand three of the transgenic lines homozygous for the N gene were evaluated fortheir resistance to tospovirus infection in greenhouse inoculation tests. S-Rhas the Sw-5 gene that confers resistance to several TSWVisolates. The six transgenic lines showed high levels of resistance wheninoculated with either TSWV-BL or a tomato isolate from Hawaii (TSWV-H).However, these same plants were highly susceptible to the Brazilian isolate ofgroundnut ringspot virus (GRSV-BR). Plants with the Sw-5gene were resistant to TSWV-BL and GRSV-BR, but were susceptible to TSWV-H.When inoculated with any of the three viruses, the F1 progeny of thecrosses exhibited a susceptible, tolerant, or resistant phenotype with a higherproportion of the plants being either tolerant or resistant. When F2progeny from F1 resistant plants of each cross were inoculated withany of the three viruses, a higher proportion of tolerant and resistant plantswas observed compared to the F1 progeny. Our results show thepotential to obtain broad resistance to tospoviruses by combining transgenicand natural resistance in a single plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号