首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteopontin (OPN) is a secreted phosphoprotein that has been associated with malignancy of breast and other cancers. OPN binds to several cell surface integrins including alpha(v)beta(3), alpha(v)beta(5), and alpha(v)beta(1). Although the relative contribution of these integrins to breast cancer cell malignancy is uncertain, correlative studies suggest that alpha(v)beta(3) may be particularly associated with increased tumor aggressiveness. Previously, we reported that tumorigenic, nonmetastatic 21NT mammary carcinoma cells respond to OPN through alpha(v)beta(5) and alpha(v)beta(1) but not alpha(v)beta(3). Here, we determined that 21NT cells lack beta(3) expression, and we asked whether expression of alpha(v)beta(3) could enhance the ability of breast cancer cells to respond to the malignancy-promoting effects of OPN both in vitro and in vivo. 21NT cells stably transfected with beta(3) showed significantly increased adhesion, migration, and invasion to OPN in vitro compared with vector control. To determine if beta(3) could also enhance the response of breast epithelial cells to OPN in vivo, cells stably transfected with both beta(3) and OPN (NT/Obeta(3)) were injected into the mammary fat pad of female nude mice and primary tumor growth was assessed relative to controls. Mice injected with NT/Obeta(3) cells demonstrated a significantly increased primary tumor take (75% of mice) compared with controls (0-12.5% of mice) as well as a decreased tumor doubling time and a decreased tumor latency period. These results suggest that increased expression of the alpha(v)beta(3) integrin during breast cancer progression can make tumor cells more responsive to malignancy-promoting ligands such as OPN and result in increased tumor cell aggressiveness.  相似文献   

2.
Tumor malignancy is associated with several features such as proliferation ability and frequency of metastasis. Since tumor metastasis shortens patients' lifetime, establishment of therapy for anti-metastasis is very important. Osteopontin (OPN), which abundantly expressed in bone matrix, is involved in cell adhesion, migration, extracellular matrix (ECM) invasion and cell proliferation via interaction with its receptor, that is, alphavbeta3 integrin. OPN is believed to be a positive regulator of tumor metastasis in vivo. However, how OPN regulates metastasis is largely unknown. Here, we explore the role of OPN in cell migration. Serum from wild-type mice induced cell migration of B16 melanoma cells, while serum from OPN-deficient mouse suppressed this event. The presence of recombinant OPN significantly enhanced cell migration compared to albumin containing medium. OPN-induced cell migration was suppressed by inhibiting the ERK/MAPK pathway indicating that OPN-induced cell migration depends on this pathway. Overexpression of OPN in these cancer cells per se promoted cell proliferation and tended to increase B16 cell migration suggesting that OPN promotes bone metastasis by playing dual roles both in host microenvironment and in tumor cell itself. In conclusion, the elevated OPN expression in host tissue and tumor cell itself promotes tumor cell migration reading to tumor metastasis, suggesting that neutralization of OPN-induced signal might be effective in suppression of tumor metastasis.  相似文献   

3.
The hepatocyte growth factor (HGF)/Met receptor signaling pathway is deregulated in diverse human malignancies and plays a central role in oncogenesis, tumor progression, and invasive cancer growth. Similarly, altered expression and splicing (i.e. inclusion of variant exon 5, "v5") of the cell adhesion marker, CD44, is associated with advanced cancer phenotypes. We sought to further understand how HGF regulates CD44v5 expression. Immortalized nontumorigenic keratinocyte (HaCaT) cells abundantly express both Met receptors and CD44v5 transmembrane glycoproteins. HGF stimulated CD44v5 protein expression and HaCaT cell migration; these events required activation of the ERK1/2 MAPK module and Sam68, a protein involved in RNA processing, splicing, and v5 inclusion. Similar to HaCaT cells, highly migratory MDA-MB-231 breast cancer cells also required Sam68 expression for HGF-induced migration. However, MDA-MB-231 cell migration occurred independently of ERK1/2 and CD44v5 expression and instead required ERK5 signaling to Sam68. Phospho-mutant, but not WT-Sam68, blocked HGF-induced cell migration in both cell types; MDA-MB-435 cells behaved similarly. These results suggest that Sam68 acts as a convergence point for ERK signaling to cell migration; blockade of phospho-Sam68 may provide a new avenue for therapeutic inhibition of metastatic cancers.  相似文献   

4.
We have recently reported that osteopontin (OPN) induces nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 activation through IkappaBalpha/IKK signaling pathways and that curcumin (diferulolylmethane) down-regulates these pathways (Philip, S., and Kundu, G. C. (2003) J. Biol. Chem. 278, 14487-14497). However, the molecular mechanism by which upstream kinases regulate the OPN-induced NFkappaB activation and urokinase type plasminogen activator (uPA) secretion in human breast cancer cells is not well defined. Here we report that OPN induces the phosphatidylinositol 3'-kinase (PI 3'-kinase) activity and phosphorylation of Akt in highly invasive MDA-MB-231 and low invasive MCF-7 cells. The OPN-induced Akt phosphorylation was inhibited when cells were transfected with a dominant negative mutant of the p85 domain of PI 3-kinase (Deltap85) and enhanced when cells were transfected with an activated form of PI 3-kinase (p110CAAX), indicating that PI 3'-kinase is involved in Akt phosphorylation. OPN enhances the interaction between IkappaBalpha kinase (IKK) and phosphorylated Akt. OPN also induces NFkappaB activation through phosphorylation and degradation of IkappaBalpha by inducing the IKK activity. However, both pharmacological (wortmannin and LY294002) and genetic (Deltap85) inhibitors of PI 3'-kinase inhibited OPN-induced Akt phosphorylation, IKK activity, and NFkappaB activation through phosphorylation and degradation of IkappaBalpha. OPN also enhances uPA secretion, cell motility, and extracellular matrix invasion. Furthermore, cells transfected with Deltap85 or the super-repressor form of IkappaBalpha suppressed the OPN-induced uPA secretion and cell motility, whereas cells transfected with p110CAAX enhanced these effects. Pretreatment of cells with PI 3-kinase inhibitors or NFkappaB inhibitory peptide (SN-50) reduced the OPN-induced uPA secretion, cell motility, and invasion. To our knowledge, this is first report that OPN induces NFkappaB activity and uPA secretion by activating PI 3'-kinase/Akt/IKK-mediated signaling pathways and further demonstrates a functional molecular link between OPN-induced PI 3'-kinase-dependent Akt phosphorylation and NFkappaB-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

5.
The expression of alphavbeta6 fibronectin/tenascin receptor integrin is induced in malignant transformation of oral epithelium. In this study, we demonstrate the contribution of alphavbeta6 as well as other fibronectin receptor integrins in squamous cell carcinoma (SCC) cell adhesion and migration. Of 11 SCC cell lines isolated from the head and neck area, 8 (73%) expressed alphavbeta6 integrin on the cell surface. Three cell lines were chosen for further functional experiments: 1 with relatively high, 1 with moderate, and 1 with minimal surface expression of alphavbeta6 integrin. In addition to alphavbeta6, all 3 cell lines expressed alpha5beta1 and alphavbeta1 fibronectin receptor integrins. Function-blocking experiments with inhibitory anti-integrin antibodies showed that all these three integrins were functional in SCC cell spreading on fibronectin. Integrin alphavbeta6, however, was not used as a primary but as an alternative fibronectin receptor by SCC cells, as the inhibitory anti-beta6 integrin antibody alone had no effect on spreading. In migration, however, alphavbeta6, alpha5beta1, and alphavbeta1 integrins were all used in cooperation. The presence of alphavbeta1 integrin in SCC cells is a novel finding as is its contribution to SCC cell migration. When one or two of these three receptors were blocked, the cells demonstrated an adaptive ability to remain migratory using integrins that were not targeted by antibodies. Utilization of a combination of receptors of different affinities may be beneficial for SCC cell migration versatility.  相似文献   

6.
Cancer progression depends on an accumulation of metastasis supporting cell signaling molecules that target signal transduction pathways and ultimately gene expression. Osteopontin (OPN) is one such chemokine like metastasis gene which plays a key signaling event in regulating the oncogenic potential of various cancers by controlling cell motility, invasiveness and tumor growth. We have reported that OPN stimulates tumor growth and nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 (pro-MMP-2) activation through IkappaBalpha/IKK (IkappaBalpha kinase) signaling pathway in melanoma cells. Urokinase type plasminogen activator (uPA), a widely acting serine protease degrades the ECM components and plays a pivotal role in cancer progression. However, the molecular mechanism by which upstream kinases regulate the OPN-induced NFkappaB activation and uPA secretion in human breast cancer cells is not well defined. Here we report that OPN induces the phosphatidylinositol 3'-kinase (PI 3'-kinase) activity and phosphorylation of Akt/PKB (protein kinase B) in highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. The OPN-induced Akt phosphorylation was inhibited when cells were transfected with dominant negative mutant of p85 domain of PI 3'-kinase (Deltap85) indicating that PI 3'-kinase is involved in Akt phosphorylation. OPN enhances the interaction between IkappaBalpha kinase (IKK) and phosphorylated Akt. OPN also induces NFkappaB activation through phosphorylation and degradation of IkappaBalpha by inducing the IKK activity. OPN also enhances uPA secretion, cell motility and ECM-invasion. Furthermore, cells transfected with Deltap85 or super-repressor form of IkappaBalpha suppressed the OPN-induced uPA secretion and cell motility. Pretreatment of cells with PI 3'-kinase inhibitors or NFkappaB inhibitory peptide (SN50) reduced the OPN-induced uPA secretion, cell motility and ECM-invasion. Taken together, OPN induces NFkappaB activity and uPA secretion by activating PI 3'-kinase/Akt/IKK-mediated signaling pathways and further demonstrates a functional molecular link between OPN induced PI 3'-kinase dependent Akt phosphorylation and NFkappaB-mediated uPA secretion, and all of these ultimately control the motility and invasiveness of breast cancer cells.  相似文献   

7.
We have recently reported that osteopontin (OPN) stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells (Das, R., Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 28593-28606). However, the role(s) of OPN on AP-1-mediated uPA secretion and cell motility and the involvement of c-Src/epidermal growth factor receptor (EGFR) in these processes in breast cancer cells are not well defined. In this study we report that OPN induces alpha(v)beta(3) integrin-mediated c-Src kinase activity in both highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. Ligation of OPN with alpha(v)beta(3) integrin induces kinase activity and tyrosine phosphorylation of EGFR in MDA-MB-231 and wild type EGFR-transfected MCF-7 cells, and this was inhibited by the dominant negative form of c-Src (dn c-Src) indicating that c-Src kinase plays a crucial role in this process. OPN induces association between alpha(v)beta(3) integrin and EGFR on the cell membrane in a macromolecular form with c-Src. Furthermore, OPN induces alpha(v)beta(3) integrin/EGFR-mediated ERK1/2 phosphorylation and AP-1 activation. Moreover, dn c-Src also suppressed the OPN-induced phosphatidylinositol (PI) 3-kinase activity in these cells indicating that c-Src acts as master switch in regulating MEK/ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways. OPN-induced ERK phosphorylation, AP-1 activation, uPA secretion, and cell motility were suppressed when cells were transfected with dn c-Src or pretreated with alpha(v)beta(3) integrin antibody, c-Src kinase inhibitor (pp2), EGFR tyrosine kinase inhibitor (PD153035), and MEK-1 inhibitor (PD98059). To our knowledge, this is the first report that OPN induces alpha(v)beta(3) integrin-mediated AP-1 activity and uPA secretion by activating c-Src/EGFR/ERK signaling pathways and further demonstrates a functional molecular link between OPN-induced integrin/c-Src-dependent EGFR phosphorylation and ERK/AP-1-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

8.
9.
We have recently demonstrated that osteopontin (OPN) induces nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 activation through IkappaBalpha/IkappaBalpha kinase (IKK) signaling pathways. However, the molecular mechanism(s) by which OPN regulates promatrix metalloproteinase-9 (pro-MMP-9) activation, MMP-9-dependent cell motility, and tumor growth and the involvement of upstream kinases in regulation of these processes in murine melanoma cells are not well defined. Here we report that OPN induced alpha(v)beta(3) integrin-mediated phosphorylation and activation of nuclear factor-inducing kinase (NIK) and enhanced the interaction between phosphorylated NIK and IKKalpha/beta in B16F10 cells. Moreover, NIK was involved in OPN-induced phosphorylations of MEK-1 and ERK1/2 in these cells. OPN induced NIK-dependent NFkappaB activation through ERK/IKKalpha/beta-mediated pathways. Furthermore OPN enhanced NIK-regulated urokinase-type plasminogen activator (uPA) secretion, uPA-dependent pro-MMP-9 activation, cell motility, and tumor growth. Wild type NIK, IKKalpha/beta, and ERK1/2 enhanced and kinase-negative NIK (mut NIK), dominant negative IKKalpha/beta (dn IKKalpha/beta), and dn ERK1/2 suppressed the OPN-induced NFkappaB activation, uPA secretion, pro-MMP-9 activation, cell motility, and chemoinvasion. Pretreatment of cells with anti-MMP-2 antibody along with anti-MMP-9 antibody drastically inhibited the OPN-induced cell migration and chemoinvasion, whereas cells pretreated with anti-MMP-2 antibody had no effect on OPN-induced pro-MMP-9 activation suggesting that OPN induces pro-MMP-2 and pro-MMP-9 activations through two distinct pathways. The level of active MMP-9 in the OPN-induced tumor was higher compared with control. To our knowledge, this is the first report that NIK plays a crucial role in OPN-induced NFkappaB activation, uPA secretion, and pro-MMP-9 activation through MAPK/IKKalpha/beta-mediated pathways, and all of these ultimately control the cell motility, invasiveness, and tumor growth.  相似文献   

10.
Osteopontin (OPN) is a secreted, non-collagenous, sialic-acid rich, glycosylated adhesive phospho- protein. Several highly metastatic transformed cells synthesized a higher level of OPN compared with non-tumorigenic cells. We have recently reported that OPN induces nuclear factor-κB (NF-κB)-mediated promatrix metalloproteinase-2 activation through IκBα/IKK signaling pathways. However, the molecular mechanism(s) by which OPN regulates pro-matrix metalloproteinase-9 (pro-MMP-9) activation and involvement of upstream kinases in regulation of these processes that ultimately control cell motility and tumor growth in murine melanoma cells are not well defined. Here we report that OPN induces αvβ3 integrin-mediated phosphorylation and activation of nuclear factor inducing kinase (NIK) and enhances the interaction between phosphorylated NIK and IκBα kinase α/β (IKKα/β) in B16F10 cells. Moreover, NIK is involved in OPN-induced phosphorylations of MEK-1 and ERK1/2 in these cells. OPN induces NIK-dependent NF-κB activation through ERK/IKKα/β-mediated pathways. Furthermore, OPN enhances NIK-regulated urokinase-type plasminogen activator (uPA) secretion, uPA-dependent pro-MMP-9 activation, and cell motility. Pretreatment of cells with anti-MMP-2 antibody along with anti-MMP-9 antibody drastically inhibited the OPN-induced cell migration and chemoinvasion, whereas cells pretreated with anti-MMP-2 antibody had no effect on OPN-induced pro-MMP-9 activation suggesting that OPN induces pro-MMP-2 and pro-MMP-9 activations through two distinct pathways. Taken together, NIK acts as crucial regulator in OPN-induced MAPK/IKK-mediated NF-κB-dependent uPA secretion and MMP-9 activation thereby controlling melanoma cell motility and chemoinvasion. An erratum to this article is available at .  相似文献   

11.
Thrombospondin-1 (TSP1) is a matricellular protein that displays both pro- and anti-adhesive activities. Binding to sulfated glycoconjugates mediates most high affinity binding of soluble TSP1 to MDA-MB-435 cells, but attachment and spreading of these cells on immobilized TSP1 is primarily beta1 integrin-dependent. The integrin alpha3beta1 is the major mediator of breast carcinoma cell adhesion and chemotaxis to TSP1. This integrin is partially active in MDA-MB-435 cells but is mostly inactive in MDA-MB-231 and MCF-7 cells, which require beta1 integrin activation to induce spreading on TSP1. Integrin-mediated cell spreading on TSP1 is accompanied by extension of filopodia containing beta1 integrins. TSP1 binding activity of the alpha3beta1 integrin is not stimulated by CD47-binding peptides from TSP1 or by protein kinase C activation, which activate alphavbeta3 integrin function in the same cells. In MDA-MB-231 but not MDA-MB-435 cells, this integrin is activated by pertussis toxin, whereas serum, insulin, insulin-like growth factor-1, and ligation of CD98 increase activity of this integrin in both cell lines. Serum stimulation is accompanied by increased surface expression of CD98, whereas insulin-like growth factor-1 does not increase CD98 expression. Thus, the pro-adhesive activity of TSP1 for breast carcinoma cells is controlled by several signals that regulate activity of the alpha3beta1 integrin.  相似文献   

12.
Osteopontin (OPN) is a tumor-associated, secreted phosphoprotein that has been implicated in breast cancer progression and metastasis. Research concerning how OPN functions in tumor progression has led to the identification of a limited number of genes that contribute functionally to OPN-induced cellular behaviors. Recent microarray analysis, comparing 21NT breast cancer cells transfected to constitutively overexpress OPN with control cells, revealed hyaluronan synthase 2 (HAS2) to be a gene highly up-regulated in OPN-overexpressing cells. In this study, we further examined the relationship between OPN and HAS2. We show that 21NT OPN-transfected cells express high levels of HAS2, which is associated with increased HA production and matrix retention and is necessary for tumor cell adhesion to bone marrow endothelial cells and anchorage-independent growth. Finally, stable transfection of antisense HAS2 into 21NT cells overexpressing OPN resulted in a reduction in HAS2 expression, HA production, and pericellular retention. Antisense-mediated down-regulation of HAS2 also resulted in a significant decrease in cellular proliferation and colony growth in soft agar. To our knowledge, this is the first report of the ability of OPN to regulate HAS2 expression and HA production in breast cancer cells and further illustrates a unique functional relationship by which enhanced HA production facilitates OPN-mediated cell behaviors.  相似文献   

13.
Mammary gland development and breast cancer growth require multiple factors both of endocrine and paracrine origin. We analyzed the roles of Epidermal Growth Factor Receptor (EGFR) and Hepatocyte Growth Factor Receptor (Met) in mammary epithelial cells and mammary tumor cells derived from a mutated-ErbB2 transgenic mice. By using highly specific tyrosine kinase inhibitors we found that MCF-10A and NMuMG mammary epithelial cell lines are totally dependent on EGFR activation for their growth and survival. Proliferation and 3D-morphogenesis assays showed that HGF had no role in maintaining mammary cell viability, but was the only cytokine able to rescue EGFR-inhibited mammary cells. Insulin-Like Growth Factor-I (IGF-I), basic-Fibroblast Growth Factor (b-FGF) and Neuregulin, which are well known mammary morphogenic factors, did not rescue proliferation or morphogenesis in these cell lines, following EGFR inhibition. Similarly, ErbB2-driven tumor cells are EGFR-dependent and also display HGF-mediated rescue. Western-blot analysis of the signaling pathways involved in rescue after EGFR inhibition indicated that concomitant ERK1/2 and AKT activation was exclusively driven by Met, but not by IGF-I or b-FGF. These results describe a unique role for EGFR and Met in mammary epithelial cells by showing that similar pathways can be used by tumorigenic cells to sustain growth and resist to EGFR-directed anti-tumorigenic drugs.  相似文献   

14.
Osteopontin (OPN) is a secreted calcium-binding phosphoprotein produced in a variety of normal and pathological contexts, including tissue mineralization and cancer. OPN contains a conserved RGD (arg-gly-asp) amino acid sequence that has been implicated in binding of OPN to cell surface integrins. To determine whether the RGD sequence in OPN is required for adhesive and chemotactic functions, we have introduced two site-directed mutations in the RGD site of the mouse OPN cDNA, in which the RGD sequence was either deleted or mutated to RGE (arg-gly-glu). In order to test the effect of these mutations on OPN function, we expressed control and mutated mouse OPN in E. coli as recombinant glutathione-S-transferase (GST)-OPN fusion proteins. Control mouse GST-OPN was functional in cell adhesion assays, supporting attachment and spreading of mouse (malignant PAP2 ras-transformed NIH 3T3, and, to a lesser extent, normal NIH 3T3 fibroblasts) and human (MDA-MB-435 breast cancer, and normal gingival fibroblast) cells. In contrast, neither of the RGD-mutated OPN proteins (“delRGD” or “RGE”) supported adhesion of any of the cell lines, even when used at high concentrations or for long assay times. GRGDS (gly-arg-gly-asp-ser) peptides inhibited cell adhesion to intact GST-OPN, as well as to fibronectin and vitronectin. In chemotaxis assays, GST-OPN promoted directed cell migration of both malignant (PAP2, MDA-MB-435) and normal (gingival fibroblast, and NIH 3T3) cells, while RGD-mutated OPN proteins did not. Together these results suggest that the conserved RGD sequence in OPN is required for the majority of the protein's cell attachment and migration-stimulating functions.  相似文献   

15.
Collaborative role of various fibronectin-binding integrins (alpha5beta1, alphavbeta1 and alphavbeta6) as mediators of cell adhesion and migration on fibronectin was studied using cultured HaCaT keratinocytes. This cell line spontaneously expressed all three fibronectin-binding integrins. In addition, the expression of alphavbeta6 integrin was strongly and specifically upregulated by transforming growth factor-beta1 (TGFbeta1) whereas the amount of other integrins remained practically unchanged on the cell surface. Adhesion, spreading and motility of HaCaT keratinocytes on fibronectin were promoted by TGFbeta1. Based on antibody blocking experiments, both untreated and TGFbeta1-treated HaCaT cells used alphavbeta6 integrin as their main fibronectin receptor for cell spreading. In contrast to TGFbeta1-treated cells, the untreated cells also needed alpha5beta1 integrin for maximal cell spreading on fibronectin. Combinations of antibodies blocking both of these receptors totally prevented spreading of both untreated and TGFbeta1-treated cells. Haptotactic motility of individual HaCaT cells through fibronectin-coated membranes was again mainly dependent on alphavbeta6 integrin, while alphavbeta1 and alpha5beta1 integrins played a lesser role both in untreated and TGFbeta1-treated HaCaT cells. However, unlike haptotaxis, lateral migration of HaCaT cell sheet was mainly mediated by beta1 integrins, and alphavbeta6 integrin showed a minor role. The migration process appeared to involve a number of beta1 integrins that could adaptively replace each other when blocking antibodies were present. Thus, keratinocytes appear to use different fibronectin receptors for different functions, such as cell spreading, haptotaxis and lateral migration. The cells can also adapt to a situation where one receptor is unfunctional by switching to another receptor of the same ligand.  相似文献   

16.
Matrix metalloproteinases (MMPs) degrade the extracellular matrix (ECM) and play critical roles in tissue repair, tumor invasion, and metastasis. MMPs are regulated by different cytokines, ECM proteins, and other factors. However, the molecular mechanisms by which osteopontin (OPN), an ECM protein, regulates ECM invasion and tumor growth and modulates MMP activation in B16F10 cells are not well defined. We have purified OPN from human milk and shown that OPN induces pro-MMP-2 production and activation in these cells. Moreover, our data revealed that OPN-induced membrane type 1 (MT1) MMP expression correlates with translocation of p65 (nuclear factor-kappaB (NF-kappaB)) into the nucleus. However, when the super-repressor form of IkappaBalpha (inhibitor of NF-kappaB) was transfected into cells followed by treatment with OPN, no induction of MT1-MMP expression was observed, indicating that OPN activates pro-MMP-2 via an NF-kappaB-mediated pathway. OPN also enhanced cell migration and ECM invasion by interacting with alpha(v)beta(3) integrin, but these effects were reduced drastically when the MMP-2-specific antisense S-oligonucleotide was used to suppress MMP-2 expression. Interestingly, when the OPN-treated cells were injected into nude mice, the mice developed larger tumors, and the MMP-2 levels in the tumors were significantly higher than in controls. The proliferation data indicate that OPN increases the growth rate in these cells. Both tumor size and MMP-2 expression were reduced dramatically when anti-MMP-2 antibody or antisense S-oligonucleotide-transfected cells were injected into the nude mice. To our knowledge, this is the first report that MMP-2 plays a direct role in OPN-induced cell migration, invasion, and tumor growth and that demonstrates that OPN-stimulated MMP-2 activation occurs through NF-kappaB-mediated induction of MT1-MMP.  相似文献   

17.
Xanthine oxidoreductase (XOR) may exert an important, but poorly defined, role in the pathogenesis of breast cancer (BC). Loss of XOR expression was linked to aggressive BC, and recent clinical observations have suggested that decreasing XOR may be functionally linked to BC aggressiveness. The goal of the present investigation was to determine whether the decreased XOR observed in clinically aggressive BC was an intrinsic property of highly invasive mammary epithelial cells (MEC). Expression of XOR was investigated using HC11 mouse MEC, HB4a and MCF-10A normal human MEC, and several human mammary tumor cells including MCF-7 and MDA-MB-231. Consistent with clinical observations, data shown here revealed high levels of XOR in normal HC11 and MCF-10A cells that was markedly reduced in highly invasive mammary tumor cells. The contribution of XOR to tumor cell migration in vitro was investigated using MDA-MB-231 and MCF-7 cells and clonally selected derivatives of HC11 that exhibit either weak or strong migration in vitro. We observed that over-expression of an XOR cDNA in MDA-MB-231 and in HC11-C24, both possessing weak XOR expression and high migratory capacity, inhibited their migration in vitro. Conversely, pharmacological inhibition of XOR in MCF-7 and HC11-C4, both possessing high XOR expression and weak migratory capacity, stimulated their migration in vitro. Further experiments suggested that XOR derived ROS mediated this effect and also modulated COX-2 and MMP levels and function. These data demonstrate a functional link between XOR expression and MEC migration and suggest a potential role for XOR in suppressing BC pathogenesis.  相似文献   

18.
Four different human breast cancer cell lines were examined to search for genes associated with tumor growth and metastasis. Each of these cell lines, MDA-MB-453, MCF-7, MDA-MB-231 and MDA-MB-435, displays different phenotypic characteristics ranging from poorly to highly tumorigenic and metastatic. The differences in gene expression profiles of these cell lines generated by differential display technique should allow one to identify candidates as putative oncogenes or tumor/metastasis suppressor genes. A novel cDNA expressed in the highly tumorigenic and metastatic cell line, MDA-MB-435, was identified and isolated by this approach. The function for this gene, designated ALP56 (aspartic-like protease 56 kDa), in tumor progression is suggested by the homology of the encoded protein to aspartic proteases, such as cathepsin D. The amino acid residues in two catalytic domains of this family are highly conserved in those domains of ALP56. Northern hybridization indicated that the expression of ALP56 is associated with growth and metastasis of MDA-MB-435 tumors in immunodeficient mice. In situ hybridization of biopsies from breast cancer and colon cancer patients indicated that ALP56 is upregulated in human primary tumors and liver metastasis. These results suggest that this novel gene correlates with human tumor progression.  相似文献   

19.
Rac GTPases are known to play a crucial role in regulating cytoskeletal changes necessary for cell migration. Migration has been shown to be positively regulated by Rac in most cell types. However, there is also a large body of conflicting evidence in some other cell types with respect to the role of Rac in migration, suggesting that Rac GTPases regulate cell migration in a cell type-dependent manner. In the present study, we have characterized the effects of Rac1 GTPase inhibition on the migratory abilities of a number of breast cancer cell lines with differential degrees of tumorigenic and metastatic potentials. We show that Rac1 inhibition in non-metastatic (MCF-7, T-47D) or moderately metastatic (Hs578T) cell lines results in inhibition of migration, whereas in highly metastatic cell lines (MDA-MB-435, MDA-MB-231, and C3L5) Rac1 inhibition results in stimulation of migration. This stimulation of migration following Rac1 inhibition is also accompanied by the enhanced RhoA activity, suggesting a possible existence of a dominating role of RhoA over Rac1 in regulating intrinsic migration of the highly metastatic breast cancer cells.  相似文献   

20.
Mesenchymal stem cells (MSCs) are characterized by their ability of self-renewal paired with the capacity to differentiate into multiple mesenchymal cell lineages. Numerous studies have reported beneficial effects of MSCs in tissue repair and regeneration. After in vivo administration, MSCs home to and engraft to injured tissues. However, the molecular mechanisms are not clear. Osteopontin (OPN) has been found to be elevated in response to injury and inflammation and its role on cell mobilization has been studied. Therefore, the facts imply that OPN may contribute to the recruitment of MSCs to the sites of injury. In this study, using transwell assay, we found that rat bone marrow-derived mesenchymal stem cells (rMSCs) migrated towards OPN in a concentration-dependent manner. To further examine the involved molecular mechanisms for OPN-induced rMSCs migration, RT-PCR, and Western blot were used to detect the expressions of integrin β1 and CD44v6, the two receptors of OPN. OPN promoted integrin β1 mRNA and protein expression while CD44v6 mRNA level was not altered. Blockade of integrin β1 also inhibited OPN-induced rMSCs migration, indicating the possible involvement of integrin β1 in OPN-induced migration in rMSCs. Our data have shown for the first time that OPN increases integrin β1 expression in rMSCs and promotes rMSCs migration through the ligation to integrin β1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号