首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strain of Listeria monocytogenes isolated from a drain in a food-processing plant was demonstrated, by determination of D values, to be more resistant to the lethal effect of heat at 56 or 59 degrees C following incubation for 45 min in tryptose phosphate broth (TPB) at pH 12.0 than to that of incubation for the same time in TPB at pH 7.3. Cells survived for at least 6 days when they were suspended in TPB at pHs 9.0, 10.0, and 11.0 and stored at 4 or 21 degrees C. Cells of L. monocytogenes incubated at 37 degrees C for 45 min and then stored for 48 or 144 h in TPB at pH 10.0 were more resistant to heat treatment at 56 degrees C than were cells stored in TPB at pH 7.3. The alkaline-stress response in L. monocytogenes may induce resistance to otherwise lethal thermal-processing conditions. Treatment of cells in 0.05 M potassium phosphate buffer (pH 7.00 +/- 0.05) containing 2.0 or 2.4 mg of free chlorine per liter reduced populations by as much as 1.3 log(10) CFU/ml, while treatment with 6.0 mg of free chlorine per liter reduced populations by as much as 4.02 log(10) CFU/ml. Remaining subpopulations of chlorine-treated cells exhibited some injury, and cells treated with chlorine for 10 min were more sensitive to heating at 56 degrees C than cells treated for 5 min. Contamination of foods by L. monocytogenes cells that have survived exposure to processing environments ineffectively cleaned or sanitized with alkaline detergents or disinfectants may have more severe implications than previously recognized. Alkaline-pH-induced cross-protection of L. monocytogenes against heat has the potential to enhance survival in minimally processed as well as in heat-and-serve foods and in foods on holding tables, in food service facilities, and in the home. Cells surviving exposure to chlorine, in contrast, are more sensitive to heat; thus, the effectiveness of thermal processing in achieving desired log(10)-unit reductions is not compromised in these cells.  相似文献   

2.
Nisin, a bacteriocin produced by some strains of Lactococcus lactis, acts against foodborne pathogen Listeria monocytogenes. A single exposure of cells to nisin can generate nisin-resistant (Nisr) mutants, which may compromise the use of nisin in the food industry. The objective of this research was to compare the heat resistance of Nisr and wild type (WT) Listeria monocytogenes. The synergistic effect of heat-treatment (55 degrees C) and nisin (500 IU ml-1) on the Nisr cells and the WT L. monocytogenes Scott A was also studied. When the cells were grown in the absence of nisin, there was no significant (alpha = 0.05) difference in heat resistance between WT and Nisr cells of L. monocytogenes at 55, 60 and 65 degrees C. However, when the Nisr cells were grown in the presence of nisin, they were more sensitive to heat at 55 degrees C than the WT cells. The D-values at 55 degrees C were 2.88 and 2.77 min for Nisr ATCC 700301 and ATCC 700302, respectively, which was significantly (alpha = 0.05) lower than the D-value for WT, 3.72 min. When Nisr cells were subjected to a combined treatment of heat and nisin, there was approximately a four log reduction during the first 7 min of treatment.  相似文献   

3.
The objective of this study was to compare high pressure resistance of Listeria monocytogenes strains at 25 degrees C and 50 degrees C at 350 MPa and to use high pressure (250 MPa and 350 MPa) at 30 degrees C and 40 degrees C for the inactivation of the relatively most pressure resistant strain inoculated in pasteurized apple, apricot, cherry and orange juices. L. monocytogenes CA was found to be the relatively most pressure resistant strain and increasing pressurization from 250 MPa to 350 MPa at 30 degrees C had an additional three to four log cycle reduction in viability, still leaving viable cells after 5 min. When 350 MPa at 40 degrees C for 5 min was applied more than eight log cycle reduction in cell population of all fruit juices was achieved. This study demonstrated that low temperature (40 degrees C) high pressure (350 MPa) treatment has the potential to inactivate relatively pressure resistant L. monocytogenes strains inoculated in different fruit juices within 5 min.  相似文献   

4.
To determine the contribution of sigma B (sigma(B)) to survival of stationary-phase Listeria monocytogenes cells following exposure to environmental stresses, we compared the viability of strain 10403S with that of an isogenic nonpolar sigB null mutant strain after exposure to heat (50 degrees C), ethanol (16.5%), or acid (pH 2.5). Strain viabilities were also determined under the same conditions in cultures that had been previously exposed to sublethal levels of the same stresses (45 degrees C, 5% ethanol, or pH 4.5). The DeltasigB and wild-type strains had similar viabilities following exposure to ethanol and heat, but the DeltasigB strain was almost 10,000-fold more susceptible to lethal acid stress than its parent strain. However, a 1-h preexposure to pH 4.5 yielded a 1,000-fold improvement in viability for the DeltasigB strain. These results suggest the existence in L. monocytogenes of both a sigma(B)-dependent mechanism and a pH-dependent mechanism for acid resistance in the stationary phase. sigma(B) contributed to resistance to both oxidative stress and carbon starvation in L. monocytogenes. The DeltasigB strain was 100-fold more sensitive to 13.8 mM cumene hydroperoxide than the wild-type strain. Following glucose depletion, the DeltasigB strain lost viability more rapidly than the parent strain. sigma(B) contributions to viability during carbon starvation and to acid resistance and oxidative stress resistance support the hypothesis that sigma(B) plays a role in protecting L. monocytogenes against environmental adversities.  相似文献   

5.
The amino acid pools in Chinese hamster lung V79 cells were measured as a function of time during hyperthermic exposure at 40.5 degrees and 45.0 degrees C. Sixteen of the 20 protein amino acids were present in sufficient quantity to measure accurately. The total amino acid pool and all individual amino acids, except glutamine, remained relatively constant for at least 90 min at 40.5 degrees C and for 30 min at 45 degrees C. The glutamine pool decreased rapidly to 20% of its control value within 30 min at 40.5 degrees C with a T1/2 = 15 min. At 45 degrees C, the decrease was 36%. Thermotolerance developed at 40.5 degrees C with a T1/2 = 30 min; thus, glutamine depletion preceeds the development of thermotolerance. The depletion of glutamine is probably due to increased metabolism and oxidation of glutamine through the TCA cycle at hyperthermic temperatures. Glutamine, as is true for other amino acids, was shown to protect proteins from thermal inactivation and V79 cells from hyperthermic killing when added in excess (4-10 mM) to the medium during heat stress. However, the stability of the total amino acid pool during the development of thermotolerance indicates that resistance to heat does not result from the accumulation of amino acids which then protect against thermal damage. The effects of the large decrease in the glutamine pool are unknown, although glutamine depletion may act as a signal for part of the heat shock response.  相似文献   

6.
AIMS: To determine the ability of Listeria monocytogenes to survive exposure to commercial food-processing equipment cleaning solutions and subsequent treatment with sanitizers or heat. METHODS AND RESULTS: Cells of five strains of L. monocytogenes were suspended in 1% solutions of eight commercial cleaners (pH 7.1-12.5) or in water (control) and incubated at 4 degrees C for 30 min or 48 h before populations were determined by plating on tryptose phosphate agar. After exposure of cells to cleaning solutions for 30 min, populations of the most resistant strain of L. monocytogenes were reduced by < or = 1.63 log10 cfu ml(-1). In only three highly alkaline cleaning solutions (pH 11.6-12.4) were populations reduced significantly (P < or = 0.05) compared with reductions in water. After 48 h, populations were significantly higher in one cleaning solution (pH 10.4) than in water, while populations in six of the other seven cleaning solutions were reduced by > or = 4.72 log10 cfu ml(-1). Cells exposed to cleaning solutions for 30 min became sensitive to 4.0 or 6.0 mg l(-1) free chlorine and to 50 or 100 mg l(-1) benzalkonium chloride and cetylpyridinium chloride, common components of quaternary ammonium sanitizers. Cells exposed to four of the five test cleaners had D56 degrees C values less than or equal to those of the control cells. CONCLUSIONS: Listeria monocytogenes tolerates exposure to a high concentration of alkaline cleaning solutions but consequently becomes sensitized to sanitizers. SIGNIFICANCE AND IMPACT OF THE STUDY: The elimination of L. monocytogenes surviving exposure to alkaline cleaning solutions widely used for food-processing equipment is essential and the appropriate use of sanitizers for subsequent application to equipment is important in achieving this goal.  相似文献   

7.
AIMS: The objective of this study was to determine the influence of mild heat treatment, storage temperature and storage time on the survival and growth of Listeria monocytogenes inoculated onto cut iceberg lettuce leaves. METHODS AND RESULTS: Before or after inoculation with L. monocytogenes, cut iceberg lettuce leaves were dipped in water (20 or 50 degrees C) containing or not 20 mg l(-1) chlorine, for 90 s, then stored at 5 degrees C for up to 18 days or 15 degrees C for up to 7 days. The presence of 20 mg l(-1) chlorine in the treatment water did not significantly (alpha=0.05) affect populations of the pathogen, regardless of other test parameters. The population of L. monocytogenes on lettuce treated at 50 degrees C steadily increased throughout storage at 5 degrees C for up to 18 days. At day 10 and thereafter, populations were 1.7-2.3 log10 cfu g(-1) higher on lettuce treated at 50 degrees C after inoculation compared with untreated lettuce or lettuce treated at 20 degrees C, regardless of chlorine treatment. The population of L. monocytogenes increased rapidly on lettuce stored at 15 degrees C. At 2 and 4 days, significantly higher populations were detected on lettuce that had been treated at 50 degrees C, compared with respective samples that had been treated at 20 degrees C, regardless of inoculation before or after treatment, or the presence of 20 mg l(-1) chlorine in the treatment water. CONCLUSIONS: The results clearly demonstrated that mild heat treatment of cut lettuce leaves enhances the growth of L. monocytogenes during subsequent storage at 5 or 15 degrees C. SIGNIFICANCE AND IMPACT OF THE STUDY: Mild heat treatment of cut lettuce may result in a prolonged shelf life as a result of delaying the development of brown discoloration. However, heat treatment also facilitates the growth of L. monocytogenes during storage at refrigeration temperature, thereby increasing the potential risk of causing listeriosis.  相似文献   

8.
Asynchronously growing V79 cells were assayed for mutation induction following exposure to hyperthermia either immediately before or after being irradiated with 60Co gamma rays. Hyperthermia exposures consisted of either 43.5 degrees C for 30 min or 45 degrees C for 10 min. Each of these heat treatments resulted in a survival level of 42%. For all sequences of combined treatment with hyperthermia and radiation, cell killing by gamma rays was enhanced. Mutation induction by gamma rays was enhanced when heat preceded gamma irradiation, but no increase was observed when heat was given after gamma exposures. Treatment at 45 degrees C for 10 min gave a higher yield in mutants at all gamma doses studied compared to treatment at 43.5 degrees C for 30 min. When heat-treated cells were incubated for different periods before being exposed to gamma rays, thermal enhancement of radiation killing was lost after 24 h. In contrast, only 5-6 h incubation was needed for loss of mutation induction enhancement.  相似文献   

9.
Pulsed electric field (PEF)-resistant and PEF-sensitive Listeria monocytogenes strains were sublethally treated with electric pulses at 15 kV/cm for 29 micro s and held at 25 degrees C for 5 to 30 min prior to protein extraction. The levels of the molecular chaperones GroEL, GroES, and DnaJ were determined by immunoblotting. After 10 to 20 min after sublethal PEF treatment, a transient decrease in molecular chaperone expression was observed in the PEF-sensitive strain (Scott A). The levels of GroEL and DnaJ increased back to the basal expression level within 30 min. A substantial decrease in GroES expression persisted for at least 30 min after PEF treatment. Chaperone expression was suppressed after PEF treatment to a smaller extent in the PEF-resistant (OSY-8578) than in the PEF-sensitive strain, and no clear expression pattern was identified in OSY-8578. Inactivation of Scott A and OSY-8578 in phosphate buffer was compared when lethal PEF (27.5 kV/cm, 144 micro s) and heat (55 degrees C, 10 min) were applied in sequence. When PEF and heat treatments were applied separately, the populations of L. monocytogenes Scott A and OSY-8578 decreased 0.5 to 0.6 log CFU/ml. Cells treated first with PEF and incubated at 25 degrees C for 10 min showed substantial sensitivity to subsequent heat treatment; the decrease in counts for Scott A and OSY-8578 was 6.1 and 2.8 log CFU/ml, respectively. The sequence and time lapse between the two treatments were crucial for achieving high inactivation rates. It is concluded that PEF sensitized L. monocytogenes to heat and that maximum heat sensitization occurred when chaperone expression was at a minimum level.  相似文献   

10.
Lactobacillus plantarum has been exposed to mild heat at temperatures between 48 and 56 °C in combination with low concentrations of the lantobiotic nisin in different sequential set-ups. Exposure to heat and nisin caused synergistic reductions of Lact. plantarum viability. Efficient antimicrobial action was dependent on the growth state of the culture as well as on levels and sequences of treatment applications. Listeria monocytogenes and Escherichia coli were treated at 55 °C in the presence of magainin II amide. Synergistic reductions in viable counts could be observed for L. monocytogenes and, after prolonged exposure, also for E. coli . The bacterial membrane could be identified by fluorometry and flow cytometry as an important target of applied treatment combinations.  相似文献   

11.
The effect of prior heat shock on the thermal resistance of Listeria monocytogenes in meat was investigated. A sausage mix inoculated with approximately 10(7) L. monocytogenes per g was initially subjected to a heat shock temperature of 48 degrees C before being heated at a final test temperature of 62 or 64 degrees C. Although cells heat shocked at 48 degrees C for 30 or 60 min did not show a significant increase in thermotolerance as compared with control cells (non-heat shocked), bacteria heat shocked for 120 min did, showing an average 2.4-fold increase in the D64 degrees C value. Heat-shocked cells shifted to 4 degrees C appeared to maintain their thermotolerance for at least 24 h after heat shock.  相似文献   

12.
The effect of prior heat shock on the thermal resistance of Listeria monocytogenes in meat was investigated. A sausage mix inoculated with approximately 10(7) L. monocytogenes per g was initially subjected to a heat shock temperature of 48 degrees C before being heated at a final test temperature of 62 or 64 degrees C. Although cells heat shocked at 48 degrees C for 30 or 60 min did not show a significant increase in thermotolerance as compared with control cells (non-heat shocked), bacteria heat shocked for 120 min did, showing an average 2.4-fold increase in the D64 degrees C value. Heat-shocked cells shifted to 4 degrees C appeared to maintain their thermotolerance for at least 24 h after heat shock.  相似文献   

13.
The effect of 60 min of exercise at two intensities (50 and 60% VO2max) and temperatures (0 and 22 degrees C) on changes (delta) in plasma lipids [triglycerides (TG), glycerol (GLY), total cholesterol (TC), and HDL-cholesterol (HDL-C)] was examined. Subjects were 10 men aged 27 +/- 7 years (VO2max = 3.81 +/- 0.45 1 min, % fat = 12.2% +/- 7.1%). VO2 and respiratory exchange ratio results indicated that total energy and fat energy use were similar at the two temperatures. Changes in plasma volume (%delta PV) were different (P less than 0.05) at the two temperatures (22 degrees C: -2.3% vs 0 degrees C: 1.1%). Combining the data at each temperature revealed that the increases in concentrations were greater (P less than 0.05) at 22 degrees C (delta TG = 0.22, delta GLY = 0.20, delta TC = 0.14, delta HDL-C = 0.05 mmol l-1) vs 0 degrees C (delta TG = 0.10, delta GLY = 0.12, delta TC = 0.05, delta HDL-C = 0.02 mmol l-1). Combining the data for each intensity revealed that the increases in concentration were greater (P less than 0.05) at 60% VO2max for delta TG and delta HDL-C. The 60% VO2max/22 degrees C bout produced greater changes (P less than 0.05) than all other bouts for delta TC and delta HDL-C (0.21 and 0.08 mmol l-1, respectively). Only delta TG and delta GLY were greater at 22 degrees C when adjusted for %delta PV. These metabolic and plasma lipid results indicate that cold exposure does not act synergistically with exercise to further stimulate fat metabolism.  相似文献   

14.
Heat shocks did not increase the resistance of Listeria monocytogenes to an ultrasonication treatment under pressure (Mano-Sonication; MS). While heat-shocked cells (180 min, 45 degrees C) became sixfold more heat resistant than native cells (D62 = 1.8 min vs D62 = 0.24 min), the resistance of native and heat-shocked cells to MS (200 kPa, 117 microns) was the same (DMS = 1.6 min). The inactivation rate of non-heat-shocked cells of L monocytogenes by a combined heat/ultrasonication treatment under pressure (Mano-Thermo-Sonication; MTS) was an additive effect. On the contrary, on heat-shocked cells, the inactivation rate of MTS was greater than that of heat added to the inactivation rate of MS (synergistic effect) in the range 62-68 degrees C.  相似文献   

15.
Spores of Dictyostelium discoideum may be quantitatively activated with a heat treatment of 45 degrees C for 30 min. Heat activation at either higher temperatures of for longer duration at 45 degrees C resulted in damaged spores. The spores showed an increased postactivation lag time at 23 degrees C and an increased inability to respond to deactivation with 0.2 M sucrose. As the severity of supraoptimal heating increased, a greater percentage of the spores appeared to contain phase dark lesions and to lose viability. Oxygen uptake began to decrease during and after the appearance of the lesions. Using electron microscopy, the phase dark lesions were found to be mitochondria with disrupted cristae.  相似文献   

16.
Conventional heating was used to expose cells of Listeria monocytogenes, either in broth or in situ on chicken skin, to the mean times and temperatures that are achieved during a 28 min period of microwave cooking of a whole chicken. Heating L. monocytogenes by this method in culture broth resulted in a reduction in viable cell numbers by a factor of greater than 10(6) upon reaching 70 degrees C. Simulated microwave cooking of L. monocytogenes in situ, on chicken skin, resulted in more variability in the numbers of survivors. Heating for the full cook time of 28 min, however, resulted in a mean measured temperature of 85 degrees C and no surviving listerias were detected. This indicated a reduction in viable numbers of greater than 10(6). To reduce temperature variation, cells were heated on skin in a submerged system in which exposure to 70 degrees C for 2 min resulted in a reduction in viable cell numbers of all strains of listerias tested of between 10(6) and 10(8). These results show that when a temperature of 70 degrees C is reached and maintained for at least 2 min throughout a food there is a substantial reduction in the numbers of L. monocytogenes. The survival of this organism during microwave heating when temperatures of over 70 degrees C are reported is probably due to uneven heating by microwave ovens resulting in the presence of cold spots in the product. The heat resistance of L. monocytogenes is comparable with that of many other non-sporing mesophilic bacteria.  相似文献   

17.
At elevated temperatures, germinating conidiospores of Neurospora crassa discontinue synthesis of most proteins and initiate synthesis of three dominant heat shock proteins of 98,000, 83,000, and 67,000 Mr and one minor heat shock protein of 30,000 Mr. Postemergent spores produce, in addition to these, a fourth major heat shock protein of 38,000 Mr and a minor heat shock protein of 34,000 Mr. The three heat shock proteins of lower molecular weight are associated with mitochondria. This exclusive synthesis of heat shock proteins is transient, and after 60 min of exposure to high temperatures, restoration of the normal pattern of protein synthesis is initiated. Despite the transiency of the heat shock response, spores incubated continuously at 45 degrees C germinate very slowly and do not grow beyond the formation of a germ tube. The temperature optimum for heat shock protein synthesis is 45 degrees C, but spores incubated at other temperatures from 40 through 47 degrees C synthesize heat shock proteins at lower rates. Survival was high for germinating spores exposed to temperatures up to 47 degrees C, but viability declined markedly at higher temperatures. Germinating spores survived exposure to the lethal temperature of 50 degrees C when they had been preexposed to 45 degrees C; this thermal protection depends on the synthesis of heat shock proteins, since protection was abolished by cycloheximide. During the heat shock response mitochondria also discontinue normal protein synthesis; synthesis of the mitochondria-encoded subunits of cytochrome c oxidase was as depressed as that of the nucleus-encoded subunits.  相似文献   

18.
Fifteen middle-aged, untrained (defined as no regular exercise) men (mean age 49.9 years, range 42-67) cycled on a cycle ergometer at 50 rpm for 30 min at an intensity producing 60% predicted maximum heart rate [(fc,max), where fc,max = 220 - age]. Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride (Tg) concentrations were measured from fasting fingertip capillary blood samples collected at rest, after 15 and 30 min of exercise, and at 15 min post-exercise. The mean HDL-C level increased significantly from the resting level of 0.85 mmol.l-1 to 0.97 mmol.l-1 (P < 0.05) after 15 min of exercise, increased further to 1.08 mmol.l-1 (P < 0.01) after 30 min of exercise and remained elevated at 1.07 mmol.l-1 (P < 0.01) at 15 min post-exercise. These increases represented changes above the mean resting level of 14.1%, 27.1% and 25.9% respectively. The HDL-C/LDL-C ratio increased significantly from a resting ratio of 0.20 to 0.26 after 30 min of exercise (P < 0.01) and to 0.24 at 15 min post-exercise (P < 0.05). The mean Tg level increased significantly from a resting level of 0.88 mmol.l-1 to 1.05 mmol.l-1 after 15 min, and to 1.06 mmol.l-1 after 30 min of exercise (P < 0.05 at each time). The TC/HDL-C ratio decreased significantly (P = 0.05) after 30 min of exercise and at 15 min post-exercise by 18.8% and 14%, respectively. No significant changes were observed in the levels of TC or LDL-C over time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Germinating conidiospores of Neurospora crassa that were exposed to 45 degrees C, a temperature that induces a heat shock response, were protected from injury caused by freezing in liquid nitrogen and subsequent thawing at 0 degrees C. Whereas up to 90% of the control spores were killed by this freezing and slow thawing, a prior heat shock increased cell survival four- to fivefold. Survival was determined by three assays: the extent of spore germination in liquid medium, the number of colonies that grew on solid medium, and dry-weight accumulation during exponential growth in liquid culture. The heat shock-induced protection against freezing injury was transient. Spores transferred to normal growth temperature after exposure to heat shock and before freezing lost the heat shock-induced protection within 30 min. Spores subjected to freezing and thawing stress synthesized small amounts of the heat shock proteins that are synthesized in large quantities by cells exposed to 45 degrees C. Pulse-labeling studies demonstrated that neither chilling the spores to 10 degrees C or 0 degrees C in the absence of freezing nor warming the spores from 0 degrees C to 30 degrees C induced heat shock protein synthesis. The presence of the protein synthesis inhibitor cycloheximide during spore exposure to 45 degrees C did not abolish the protection against freezing injury induced by heat shock. Treatment of the cells with cycloheximide before freezing, without exposure to heat shock, itself increased spore survival.  相似文献   

20.
AIMS: This study was conducted to validate combined heat and acid treatments for inactivating Escherichia coli O157:H7, Listeria monocytogenes and Salmonella typhimurium in an acidified brine containing, or pickled, asparagus model food. METHODS AND RESULTS: A mixture of three strains of E. coli O157:H7, L. monocytogenes and S. typhimurium were inoculated onto pickled asparagus samples. Combinations of various concentrations of acetic acid [0%, 0.25%, 0.5%, 0.75%, 1%, 1.5% and 2% (v/v)] and various temperatures (40 degrees C, 50 degrees C, 60 degrees C and 75 degrees C) were investigated. Following treatment, asparagus samples were stored at room temperature and enumerated at 0, 0.5, 1, 2 and 3 days. Heat and acetic acid treatments were synergistic. The inhibitory effects of these combined treatments on the tested foodborne pathogens were also effective during storage. Loss of green colour in the pickled asparagus significantly increased with increasing concentrations of acetic acid. CONCLUSIONS: Using a combination of mild heat and acetic acid treatments can successfully control E. coli O157:H7, L. monocytogenes and S. typhimurium in pickled asparagus, combinations of heat and acid are synergistic and effective treatments can be selected to reduce adverse effect on colour which occur during product storage. SIGNIFICANCE AND IMPACT OF THE STUDY: Mild heating plus acetic acid treatment are synergistic, so combined treatments can be developed, which would lower the temperature and amount of acetic acid required for minimally processed vegetables while maintaining pathogen control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号