首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replacement of the CRP-binding site of the gal control region by curved sequences can lead to the restoration of promoter strength in vivo. One curved sequence called 5A6A, however, failed to do so. The gene hns exerts a strong negative control on the resulting 5A6A gal promoter as well as on the distant bla promoter, specifically in a 5A6A gal context. The product of this gene, H-NS, displays a better affinity for this particular insert compared to other curved sequences. Mechanisms by which H-NS may repress promoters both at short and long distances from a favoured binding site are discussed.  相似文献   

2.
3.
Bacteriophage T5-encoded lipoprotein, synthesized by infected Escherichia coli cells, prevents superinfection of the host cell by this virus. The molecular basis of its ability to inactivate the receptor of phage T5, the FhuA protein, was investigated in vitro. Fully competent T5 lipoprotein, with a His tag attached to the C-terminus, was purified in detergent solution. Co-reconstitution with homogeneous FhuA protein into liposomes revealed that the lipoprotein inhibited the irreversible inactivation of phage T5 by FhuA protein. This phenomenon correlated with the inhibition of phage DNA ejection determined by fluorescence monitoring. Addition of detergent abolished the interaction between T5 lipoprotein and FhuA protein. When the signal sequence and N-terminal cysteinyl residue of the lipoprotein were removed by genetic truncation, the soluble polypeptide could be refolded and purified from inclusion bodies. The truncated lipoprotein interfered with infection of E. coli by phage T5, but only at very high concentrations. Circular dichroism spectra of both forms of T5 lipoprotein exhibited predominantly β-structure. T5 lipoprotein is sufficient for inactivation of the FhuA protein, presumably by inserting the N-terminal acyl chains into the membrane, thus increasing its local concentration. An in vitro stoichiometry of 10:1 has been calculated for the phage-encoded T5 lipoprotein to FhuA protein complex.  相似文献   

4.
Saccharomyces cerevisiae is frequently used as a bioreactor for conversion of exogenously acquired metabolites into value-added products, but has not been utilized for bioconversion of low-cost lipids such as triacylglycerols (TAGs) because the cells are typically unable to acquire these lipid substrates from the growth media. To help circumvent this limitation, the Yarrowia lipolytica lipase 2 (LIP2) gene was cloned into S. cerevisiae expression vectors and used to generate S. cerevisiae strains that secrete active Lip2 lipase (Lip2p) enzyme into the growth media. Specifically, LIP2 expression was driven by the S. cerevisiae PEX11 promoter, which maintains basal transgene expression levels in the presence of sugars in the culture medium but is rapidly upregulated by fatty acids. Northern blotting, lipase enzyme activity assays, and gas chromatographic measurements of cellular fatty acid composition after lipid feeding all confirmed that cells transformed with the PEX11 promoter–LIP2 construct were responsive to lipids in the media, i.e., cells expressing LIP2 responded rapidly to either free fatty acids or TAGs and accumulated high levels of the corresponding fatty acids in intracellular lipids. These data provided evidence of the creation of a self-regulating positive control feedback loop that allows the cells to upregulate Lip2p production only when lipids are present in the media. Regulated, autonomous production of extracellular lipase activity is a necessary step towards the generation of yeast strains that can serve as biocatalysts for conversion of low-value lipids to value-added TAGs and other novel lipid products.  相似文献   

5.
Binding of bacteriophage T5 to its receptor, the Escherichia coli FhuA protein, is mediated by tail protein pb5. In this article we confirm that pb5 is encoded by the T5 oad gene and describe the isolation, expression, and sequencing of this gene. In order to locate oad precisely, we analyzed recombinants between BF23, a T5-related phage with a different host range, and plasmid clones containing segments of the T5 chromosome. This analysis also showed that oad has little or no homology with hrs, the analogous BF23 gene. We were able to overproduce a protein that comigrates with pb5 after fusing a 2-kb segment containing oad to a phage T7 promoter. This segment contains an open reading frame that can encode a protein of the appropriate size. Its deduced amino acid sequence does not closely resemble that of any other protein in the database. The sequence upstream of the open reading frame shows typical characteristics of a promoter region with two overlapping, divergently orientated promoters.  相似文献   

6.
The oxaloacetate decarboxylase (OAD) Na+ pump consists of subunits , , and , which are expressed from an oadGAB gene cluster present in various anaerobic bacteria. Vibrio cholerae has two copies of oad genes, which are termed oad-1 and oad-2. The oad-2 genes are part of the citrate fermentation operon, while the oad-1 genes are flanked by genes encoding products not involved in a catabolic pathway. The gene sequences of oad-1 and oad-2 of V. cholerae strain O395-N1 were determined. The apparent frameshift in the published sequence of the oadA-2 gene from V. cholerae El Tor N16961 was not present in strain O395-N1. Upon anaerobic growth of V. cholerae on citrate, exclusively the oad-2 genes are expressed. OAD was isolated from these cells by monomeric avidin–Sepharose affinity chromatography. The enzyme was of higher specific activity than that from Klebsiella pneumoniae and was significantly more stable. Decarboxylase activity was Na+ dependent, and the activation profile showed strong cooperativity with a Hill coefficient nH=1.8. Oxalate and oxomalonate inhibited the enzyme with half-maximal concentrations of 10 M and 200 M, respectively. After reconstitution into proteoliposomes, the enzyme acted as a Na+ pump. With size-exclusion chromatography, the enzyme eluted in a symmetrical peak at a retention volume corresponding to an apparent molecular mass of approximately 570 kDa, suggesting a tetrameric structure for OAD-2. The two oad gene clusters were heterologously expressed in Escherichia coli, and the decarboxylases were isolated from the host cells.  相似文献   

7.
8.
The fhuA genes of Salmonella paratyphi B, Salmonella typhimurium, and Pantoea agglomerans were sequenced and compared with the known fhuA sequence of Escherichia coli. The highly similar FhuA proteins displayed the largest difference in the predicted gating loop, which in E. coli controls the permeability of the FhuA channel and serves as the principal binding site for the phages T1, T5, and 80. All the FhuA proteins contained the region in the gating loops required in E. coli for ferrichrome and albomycin transport. The three subdomains required for phage binding were contained in the gating loop of S. paratyphi B which is infected by the E. coli phages, whereas two of the subdomains were deleted in S. typhimurium and P. agglomerans which are resistant to the E. coli phages. Small deletions in a surface loop adjacent to the gating loop, residues 236 to 243 and 236 to 248, inactivated E. coli FhuA with regard to transport of ferrichrome and albomycin, but sensitivity to T1 and T5 was fully retained and sensitivity to 80 and colicin M was reduced 10-fold. Full-size FhuA hybrid proteins of S. paratyphi B and S. typhimurium displayed S. paratyphi B FhuA activity when the hybrids contained two-thirds of either the N- or the C-terminal portions of S. paratyphi B and displayed S. typhimurium FhuA activity to phage ES18 when the hybrid contained two-thirds of the N-terminal region of the S. typhimurium FhuA. The central segment of the S. paratyphi B FhuA flanked on both sides by S. typhimurium FhuA regions conferred full sensitivity only to phage T5. The data support the essential role of the gating loop for the transport of ferrichrome and albomycin, identified an additional loop for ferrichrome and albomycin uptake, and suggest that several segments and their proper conformation, determined by the entire FhuA protein, contribute to the multiple FhuA activities.  相似文献   

9.
The nucleotide sequence of a 4 kb fragment containing the Vibrio alginolyticus glnA, ntrB and ntrC genes was determined. The upstream region of the glnA gene contained tandem promoters. The upstream promoter resembled the consensus sequence for Escherichia coli 70 promoters whereas the presumptive downstream promoter showed homology with nitrogen regulated promoters. Four putative NRI binding sites were located between the tandem promoters. The ntrB gene was preceded by a single presumptive NRI binding site. The ntrC gene was located 45 base pairs downstream from the ntrB gene. The V. alginolyticus ntrB and ntrC genes were able to complement ntrB, ntrC deletions in E. coli.Abbreviations bp base pair(s) - CAP catabolite-activating protein - GS glutamine synthetase - kb kilobase(s) - ORF open reading frame - SD Shine-Dalgarno  相似文献   

10.
11.
Twenty-nine early promoters from bacteriophage T4 and 14 early promoters from bacteriophage T6 were isolated using vector M13HDL17, a promoterless derivative of M13mp8 carrying a linker sequence, the bacteriophage lambda-terminator tR1, and the lacZ' gene including part of its ribosome-binding site. The consensus sequence for the T4 promoters is: (sequence; see text). Ribosome-binding sites of T4 share the sequence: 5'...g.GGAga..aA.ATGAa.a...3' The consensus sequence of the T4 early promoter regions is significantly different in sequence and length from that of Escherichia coli promoters. Only one of the promoters detected with vector M13HDL17 resembled a typical bacterial promoter. The high information content raises the possibility that additional proteins recognize and contact nucleotides within the promoter region. All T4 early promoters also carry DNA sequences that could support DNA curving, a structural feature that might contribute to promoter recognition.  相似文献   

12.
13.
A chitinase-producing bacterium, designated WS7b, was isolated from a soil sample obtained from a black-pepper plantation on Bangka Island, Indonesia. Fatty-acid methyl-ester analysis indicated that the isolate was Aeromonas caviae. A chitinase gene from WS7b was cloned in a pUC19-based plasmid vector, but without its natural promoter. The complete nucleotide sequence of the gene was determined, and the structural gene consisted of a 2748-bp region encoding 864 amino acids. DNA sequence analysis indicated that the gene had been cloned without its promoter, and this was confirmed by chitinase-plate assay of the truncated version of the gene in Escherichia coli. The chitinase gene product showed amino-acid sequence similarity to chiA from A. caviae. Chitinase enzyme activity was determined spectrophotometrically, using colloidal chitin azure as substrate for extracellular and intracellular fractions. The ability of the chitinase cloned in E. coli to hydrolyze chitin was less than that of the enzyme in its indigenous host.  相似文献   

14.
Guo N  Zhang X  Lu Y  Song X 《Biotechnology letters》2007,29(3):459-464
Six promoters in the 419 bp upstream sequence of the phycocyanin β subunit gene of Arthrospira platensis FACHB341 have been previously cloned. Site-directed mutagenesis has now been used to introduce mutations in the -10 and -35 boxes of promoter 3, -10 box of promoter 4, and -35 box of promoter 6. The expression level of green fluorescent protein gene was measured by flow cytometry. Results showed that the effects of site-directed mutagenesis in different promoters were dissimilar: some increased and some declined.  相似文献   

15.
ADP-glucose pyrophosphorylase (AGPase) represents a key regulatory step in starch synthesis. A 0.9 kb of 5′ flanking region preceding Brittle2 gene, encoding the small subunit of maize endosperm AGPase, was cloned from maize genome and its expression pattern was studied via the expression of β-glucuronidase (GUS) gene in transgenic tobacco. Analysis of GUS activities showed that the 0.9 kb fragment flanking Brittle2 gene was sufficient for driving the seed-preferred expression of the reporter gene. The activity of the 0.9 kb 5′ flanking fragment was compared with that of the tandem promoter region from a zein gene (zE19, encoding a maize 19 kDa zein protein). The results indicated that both promoters were seed-preferred in a dicotyledonous system as tobacco and the activity of zE19 promoter was three to fourfold higher than that of the 0.9 kb fragment flanking Brittle2 gene in transgenic tobacco seeds. At the same time, zE19-driven GUS gene expressed earlier than Brittle2 promoter during seed development. Histochemical location of GUS activity indicated that both promoters showed high expression in embryos, which is different from similar promoters tested in maize.  相似文献   

16.
We have identified cis-regulatory elements within the 5-upstream region of a Vicia faba non-storage seed protein gene, called usp, by studying the expression of usp-promoter deletion fragments fused to reporter genes in transgenic tobacco seeds. 0.4 kb of usp upstream sequence contain at least six, but probably more, distinct cis-regulatory elements which are responsible for seemingly all quantitative, spatial and temporal aspects of expression. Expression-increasing and-decreasing elements are interspersed and include an AT-rich sequence, a G-box element and a CATGCATG motif. The latter acts as a negative element in contrast to what has been found for the same motif in legumin-and vicilin-type seed storage protein gene promoters. Seed specificity of expression is mainly determined by the –68/+51 region which confers, however, only very low levels of expression. The data support the combinatiorial model of promoter function.  相似文献   

17.
18.
The carR region encodes a light-inducible promoter, a negative regulator of the promoter and a trans-acting activator that controls the light-inducible Myxococcus xanthus carotenoid biosynthesis regulon. DNA sequence analysis revealed, downstream of the promoter, three translationally coupled genes, carQ, carR and carS. Sequencing of mutations demonstrated that carR encoded the negative regulator and was an integral membrane protein. Mutant construction and sequencing revealed that carS was the trans-acting activator and that carQ was a positive regulator of the promoter. Neither gene encodes proteins with known sequence-specific DNA-binding motifs. The sequence of the light-inducible promoter region, identified by primer extension analysis, showed similarity to the consensus sequence of the Escherichia coli stress response (‘heat-shock’) promoters.  相似文献   

19.
Zheng X  Deng W  Luo K  Duan H  Chen Y  McAvoy R  Song S  Pei Y  Li Y 《Plant cell reports》2007,26(8):1195-1203
Here we report the effect of the 35S promoter sequence on activities of the tissue- and organ-specific gene promoters in tobacco plants. In the absence of the 35S promoter sequence the AAP2 promoter is active only in vascular tissues as indicated by expression of the AAP2:GUS gene. With the 35S promoter sequence in the same T-plasmid, transgenic plants exhibit twofold to fivefold increase in AAP2 promoter activity and the promoter becomes active in all tissue types. Transgenic plants hosting the ovary-specific AGL5:iaaM gene (iaaM coding an auxin biosynthetic gene) showed a wild-type phenotype except production of seedless fruits, whereas plants hosting the AGL5:iaaM gene along with the 35S promoter sequence showed drastic morphological alterations. RT-PCR analysis confirms that the phenotype was caused by activation of the AGL5:iaaM gene in non-ovary organs including roots, stems and flowers. When the pollen-, ovule- and early embryo-specific PAB5:barnase gene (barnase coding a RNase gene) was transformed, the presence of 35S promoter sequence drastically reduced transformation efficiencies. However, the transformation efficiencies were restored in the absence of 35S promoter, indicating that the 35S promoter might activate the expression of PAB5:barnase in non-reproductive organs such as calli and shoot primordia. Furthermore, if the 35S promoter sequence was replaced with the NOS promoter sequence, no alteration in AAP2, AGL5 or PAB5 promoter activities was observed. Our results demonstrate that the 35S promoter sequence can convert an adjacent tissue- and organ-specific gene promoter into a globally active promoter. Xuelian Zheng and Wei Deng contributed equally to this work and are considered co-first authors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号