首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of haematopoietic precursor cell lines have been established which exhibit an absolute dependence on haematopoietic cell growth factor (HCGF) which is secreted by WEHI-3 myelomonocytic leukaemia cells. In the presence of HCGF, ATP levels are maintained in these factor-dependent cells (FDC-P cells); in the absence of HCGF, intracellular ATP levels undergo a steady depletion. The cell death that follows this ATP depletion can be prevented by supplying exogenous ATP suggesting that HCGF maintains these cells via its effects on energy metabolism. We have investigated the effect of HCGF on FDC-P cells further and found that: (i) HCGF markedly and rapidly increases lactate production; (ii) high extracellular glucose or glycolytic intermediate concentrations can maintain FDC-P cell viability to some extent whilst stimulating lactate production; (iii) the uptake of 2-deoxyglucose by FDC-P2 cells is stimulated by HCGF in a dose-dependent fashion. This uptake is inhibited by cytochalasin B; (iv) HCGF does not stimulate L-glucose uptake by FDC-P cells. These results suggest that HCGF acts to maintain FDC-P cells via its action on glucose transport. The significance of these results to haemopoiesis and leukaemogenesis is discussed.  相似文献   

2.
WEHI-3B myelomonocytic leukaemia cells secrete a haemopoietic cell growth factor (HCGF) which facilitates the proliferation and development of multipotential stem cells and committed progenitor cells. Several cloned, nonleukaemic cell lines (FDC-P cells) are absolutely dependent on HCGF and die in the absence of it. In these cell lines, factor dependence is associated with the ability of HCGF to increase glucose uptake, thereby controlling glycolytic flux and intracellular ATP levels. We have now investigated the effects of HCGF on glucose uptake in WEHI-3B cells. At 20 degrees C 2-deoxyglucose uptake could be stimulated by the addition of HCGF to the extracellular medium. L-glucose uptake was markedly lower than 2-deoxyglucose uptake and did not respond to the addition of HCGF. At 37 degrees C no HCGF stimulation of 2-deoxyglucose uptake was found. However, at this temperature HCGF release from WEHI-3B cells was markedly higher than at 20 degrees C. Our experiments indicate that HCGF stimulates the glucose transport system in both WEHI-3 cells and FDC-P cells. The similarities between the WEHI-3B cell and FDC-P2 cell polypeptide phenotype were investigated using two-dimensional isoelectric focussing/poly-acrylamide gel electrophoresis. This revealed a high degree of correlation between the two cell types in their protein constituents, indicating a close relationship between the normal and leukaemic cells. These similarities between WEHI-3B cells and FDC-P2 cells are considered and their relevance to haemopoiesis and leukaemogenesis is discussed.  相似文献   

3.
A myelomonocytic leukaemia cell line, WEHI-3, releases into its growth medium factors which stimulate the development of pluripotential cells, granulocyte/macrophage progenitor cells, megakaryocytic and erythroid progenitor cells. Also present is a factor which is essential for the continued proliferation in vitro of a variety of haemopoietic precursor cell lines of a granulocytic nature (FDC-P cells). Characterization of this growth factor has demonstrated that it is a glycoprotein of apparent Mr 25 800, in which the carbohydrate component appears to be important for activity. After several purification steps, there is an increase in specific activity of approx. 4000-fold over the starting material. At each stage of purification, the factor necessary for the proliferation of FDC-P cells 'co-purifies' with activity which stimulates the proliferation and development of normal multipotential haemopoietic cells as well as megakaryocytic, erythroid and granulocytic committed progenitor cells. This 'co-purification' occurs to the extent that the multilineage stimulating factor and the FDC-P growth factor can be eluted from the same region of sodium dodecyl sulphate/polyacrylamide gels. Thus, evidence so far, using different starting methods and purification regimes, suggests that one molecule may have multiple activities on diverse cell types.  相似文献   

4.
The proliferation and differentiation of hemopoietic committed progenitor cells depend on colony stimulating factors (CSF). However, isolated mouse granulocyte-macrophage progenitor cells can still undergo limited proliferation in serum-free cultures after CSF deprivation. To test whether this is due to an accumulated pool of internalized factor, we examined the binding, internalization and degradation of radiolabelled interleukin 3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) in various hemopoietic cells. We found 20,000 high affinity IL-3 receptors on cells of two IL-3-dependent hemopoietic cell lines, FDC-P1 and FDC-P2 (Kd = 85 and 129 pM). FDC-P1 cells, which also respond to GM-CSF, possess 600 high-affinity GM-CSF receptors (Kd = 64 pM). Cells of both lines internalize IL-3, but only FDC-P1 cells release degraded IL-3 at a rapid rate. Both cell lines have similar dose-response curves for IL-3 and survival kinetics after factor removal. All other cells tested behave like FDC-P1, suggesting that the metabolism of IL-3 by FDC-P2 is exceptional. Our study indicates that transient proliferation of committed progenitor cells in the absence of added factors is apparently not due to a stable pool of internalized CSF but merely represents an intrinsic capability of these cells.  相似文献   

5.
The Steel anemia of mice results from an inherited defect in the hematopoietic microenvironment. Proteoglycans synthesized by bone marrow stromal cells are an important functional component of the hematopoietic microenvironment in normal animals. It is thus possible that Steel anemia results from a molecular abnormality involving bone marrow stromal proteoglycans. To investigate this possibility, we studied proteoglycan synthesis in three stromal cell lines from Steel anemic (Sl/Sld) animals and two control stromal cell lines, one (+/+2.4) from a non-anemic littermate, and one (GBl/6) from a normal mouse. Proteoglycans were precursor labelled with 35S sulfate and separated by ion exchange HPLC, CsCl density gradient centrifugation, and molecular sieve HPLC. Glycosaminoglycan (GAG) moieties were characterized by molecular sieve HPLC and enzyme sensitivity. There were no consistent differences in total proteoglycan synthesis, proteoglycan heterogeneity, GAG hydrodynamic size, or enzyme sensitivity among the cell lines studied. Growth factor binding to stromal extracellular matrix (ECM) was studied by co-culture of an IL-3-dependent cell line (FDC-P1) with cell-free ECM preparations from an Sl/Sld and a control (GBl/6) stromal cell line, with and without pre-incubation with IL-3. Cell-free ECM preparations from Sl/Sld and control cell lines supported FDC-P1 growth to an approximately equal extent after pre-incubation with IL-3. FDC-P1 growth support by ECM preparations from both cell lines was also observed without IL-3 pre-incubation, although to a lesser extent, suggesting ECM binding of endogenous growth factors synthesized by the stromal cells.  相似文献   

6.
The objective of this study was to evaluate induction of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, and subsequent polyamine accumulation in interleukin-2 (IL-2)- and interleukin-3 (IL-3)-dependent growth. The CTLL-20 and FDC-P1 cell lines, which have been shown to be absolutely dependent on IL-2 and IL-3, respectively, were used in these studies. The CTLL-20 and FDC-P1 cells each had different temporal patterns of ODC induction following lymphokine stimulation. ODC levels increased rapidly in the FDC-P1 cells, peaking 4 hr after stimulation with IL-3. In contrast, peak ODC activity in the CTLL-20 cells occurred 18 hr following stimulation with IL-2 and reached eightfold higher levels than those observed in the FDC-P1 cells. Treatment with D,L-alpha-difluoromethylornithine X HCl X H2O (DFMO), a specific irreversible inhibitor of ODC activity, completely abrogated lymphokine-dependent ODC induction in both the CTLL-20 and FDC-P1 cell lines. Similarly, intracellular levels of the polyamines putrescine and spermidine were reduced in both cell lines following DFMO treatment. DFMO treatment reduced both IL-2- and IL-3-dependent proliferation in a dose-dependent manner. However, this inhibition could be reversed by the addition of exogenous putrescine. DFMO treatment had no effect on cell viability. Polyamine-depleted CTLL-20 and FDC-P1 cells showed decreased absorption of IL-2 and IL-3 activity, respectively. However, the addition of exogenous putrescine restored the ability of the cells to absorb the appropriate lymphokine. These data are the first to demonstrate that ODC induction and polyamine biosynthesis are required in lymphokine dependent growth.  相似文献   

7.
The growth in vitro of the murine myeloid cell line FDC-P1 depends on the presence of serum and a murine hemopoietic growth factor (either granulocyte/macrophage colony-stimulating factor (GM-CSF) or multipotential colony-stimulating factor (multi-CSF, IL3]. To determine the differential roles of serum and colony-stimulating factor (CSF) during the growth of FDC-P1 cultures, we investigated the kinetics of proliferation and death after withdrawal of serum or CSF, using flow cytometry to quantitate the numbers of vital and dead cells. After withdrawal of CSF, the cells died without entering a quiescent state. The life span of cultures lacking CSF increased with increasing concentrations of serum (greater than 50 h at 30% serum), and the cells kept dividing until they died. During the period of population death caused by the absence of CSF, the re-addition of CSF immediately prevented further cells from dying. After the withdrawal of serum in the presence of CSF, the cells continued to live and proliferate for weeks, but required high cell densities (much greater than 10(5)/ml), which suggests that the cells produced an active substance that can substitute for serum. Serum as well as serum-free conditioned medium from dense cultures made the survival and growth of FDC-P1 cultures independent of cell density. Without sufficient quantities of this activity, all cells of the population died within an interval that was much shorter than one cell cycle, which indicates that the factor acts throughout most of the cell cycle. The results suggest that both the CSF and the serum factor act together to permit cell survival, rather than to drive proliferation.  相似文献   

8.
9.
Epidermal growth factor (EGF) is commonly thought to affect the proliferation of many cells, especially epithelial cells. Aberrant expression of the receptor for EGF, (EGFR) or members of the EGFR family is often implicated in the etiology of many cancers. Ligation of the EGFR results in the activation of many downstream signaling pathways which have profound effects on cell cycle progression and the prevention of apoptosis. In general, the EGFR is thought to be either not expressed or expressed at low levels in hematopoietic cells. We determined that the EGFR was expressed at a low level in the murine cytokine-dependent hematopoietic cell line FDC-P1 but not in an additional murine IL-3 dependent cell line FL5.12. EGF induced a mild effect on DNA synthesis and ERK activation in EGFR positive FDC-P1 cells but not EGFR negative FL5.12 cells. Addition of suboptimal concentrations of IL-3 synergized with EGF in stimulating DNA synthesis in EGFR-positive FDC-P1 cells. Likewise, the EGFR inhibitor AG1478 induced apoptosis in EGFR positive FDC-P1 cells but not EGFR negative FL5.12 cells. Both cell lines can be directly transformed to cytokine independence by activated EGFR (v-ERBB) expression in the absence of autocrine growth factors indicating that they are poised to fully utilize EGFR mediated signal transduction pathways as a means for proliferation. These results document the functional importance of endogenous EGFR signaling pathway in some hematopoietic cells.  相似文献   

10.
Studies on BrdU labeling of hematopoietic cells: stem cells and cell lines   总被引:4,自引:0,他引:4  
Studies using chronic in vivo BrdU exposure, isolating primitive stem cells, and determining BrdU labeling, indicate that stem cells cycle. BrdU is also incorporated into DNA during damage/repair. DNA, which has incorporated BrdU due to cycle transit is heavier than normal, while the density of DNA with damage/repair incorporation is intermediate. DNA density of purified lineage-rhodamine low (rho(low)) Hoechst low (Ho(low)) stem cells or FDC-P1 cell line cells-was assessed in vitro, after exposure to cytokines and BrdU (cycling model) or cytokines and BrdU with bleomycin to induce strand breaks and hydroxyurea to halt cycle progression (damage/repair model). We determined DNA density using cesium chloride (CsCl) gradients and either fluorometry or dot blot chemiluminesence. DNA from BrdU labeled cycling Lin-rho(lo)Ho(lo) or FDC-P1 cells was heavier than normal DNA, while damage repair DNA had an intermediate density. We then assessed BrdU labeling of Lin-rho(lo)Ho(lo) cells in vivo. We found that 70.9% of lin-rho(lo)Ho(lo) cells labeled at 5 weeks. DNA density of these cells was low, in the damage/repair range, but similar results were obtained with stem cells, which had proliferated in vivo. Dilution of BrdU in in vitro culture of proliferating FDC-P1 cells also resulted in damage/repair density. We conclude that in vitro BrdU labeling models can distinguish between proliferation and damage/repair, but that we cannot obtain high enough in vivo levels to address this issue. All together, while we cannot absolutely exclude damage/repair as contributing to stem cell BrdU labeling, the data indicate that primitive bone marrow stem cells are probably a cycling population.  相似文献   

11.
ME26 virus, which was generated by inserting the coding region of the acute avian leukemia-inducing virus E26 into a murine retrovirus vector, encodes a 135-kDa gag-myb-ets fusion protein. Amphotropic murine leukemia virus pseudotypes of ME26 virus induce a high incidence of erythroleukemia 2 to 4 months after injection into newborn NFS/N mice. Spleen cells from the majority of these mice proliferate to high levels in the presence of the erythroid hormone erythropoietin (Epo) and can easily be established as permanent Epo-dependent cell lines. The cell lines contain multiple copies of ME26 viral DNA and express viral message and protein. An Epo receptor mRNA of normal size can be detected in these cells, and binding studies reveal a single class of lower-affinity Epo receptor with an affinity for Epo that is in the range of that previously reported for erythroid cells. The ME26 virus-induced Epo-dependent cell lines, however, appear more immature than previously described erythroid cell lines and more closely resemble early hematopoietic precursor cells, suggesting that the virus may be activating the Epo receptor in hematopoietic cells that do not normally express it. Consistent with this idea, we are able to infect an interleukin-3-dependent myeloid cell line, FDC-P2, with ME26 virus and convert it to Epo dependence. The ME26 virus-infected FDC-P2 cells, even before growth on Epo, showed a large increase in the amount of Epo receptor mRNA. However, no ME26 viral integrations can be detected adjacent to the Epo receptor gene, indicating that the virus is not activating the Epo receptor gene by promoter/enhancer insertion. Our results are more consistent with the hypothesis that the gag-myb-ets-encoded viral fusion protein, which is known to bind DNA, is directly or indirectly activating the expression of the Epo receptor gene in these cells.  相似文献   

12.
Although transduction with amphotropic murine leukemia virus (MLV) vectors has been optimized successfully for hematopoietic differentiated progenitors, gene transfer to early hematopoietic cells (stem cells) is still highly restricted. A similar restriction to gene transfer was observed in the mouse stem cell line FDC-Pmix compared with transfer in the more mature myeloid precursor cell line FDC-P1 and the human erythroleukemia cell line K562. Gene transfer was not improved when the vector was pseudotyped with gp70SU of the 10A1 strain of MLV, which uses the receptor of the gibbon ape leukemia virus (Pit1), in addition to the amphotropic receptor (Pit2). Although 10A1 and amphotropic gp70SU bound to FDC-P1, K562, and fibroblasts, no binding to FDC-Pmix cells was detected. This indicates that FDC-Pmix cells lack functional Pit2 and Pit1 receptors. Pseudotyping with the vesicular stomatitis virus G protein improved transduction efficiency in FDC-Pmix stem cells by 2 orders of magnitude, to fibroblast levels, confirming a block to retroviral infection at the receptor level.  相似文献   

13.
A retrovirus encoding polyoma middle T antigen has been used to infect a murine hemopoietic cell line (FDC-P1) dependent on either granulocyte-macrophage colony-stimulating factor (GM-CSF) or multipotential colony-stimulating factor (Multi-CSF). A number of cell lines have been established on the basis of their initial ability to proliferate in the absence of added colony-stimulating factor (CSF). The transformed lines display one of three patterns of growth in vitro: those able to grow fully autonomously; those whose proliferation depends on cell density; and those displaying dependence on added CSF regardless cell density. This latter class of cells are reminiscent of the majority of primary myeloid leukemic cells. Unlike parental FDC-P1 cells, all three classes of transformed cells are leukemogenic in syngeneic mice; moreover, they produce variable amounts of GM-CSF which we believe underlies their neoplastic behavior.  相似文献   

14.
A multipotent immature myeloid cell population was produced from a basic fibroblast growth factor (bFGF)-dependent hematopoietic stem cell line, A-6, when cultured with stem cell factor (SCF) replacing bFGF. Those cells were positive for stem cell markers, c-kit and CD34, and a myeloid cell marker, F4/80. Some cell fractions were also positive for Mac-1, a macrophage marker or Gr-1, a granulocytic maker, but negative for an erythroid marker TER119. They also showed the expression of mRNA for the myeloid-specific PU.1 but did not that for the erythroid-specific GATA-1. Among various cytokines, interleukin-3 (IL-3) induced erythroid precursor cells that expressed the erythroid-specific GATA-1 and beta-major globin. The quantitative analysis showed that erythroid precursor cells were newly produced from the immature myeloid cells by cultivation with IL-3. SCF and IL-3 induced stepwise generation of erythroid precursor cells from an A-6 hematopoietic stem cell line.  相似文献   

15.
Chou YF  Chen HH  Eijpe M  Yabuuchi A  Chenoweth JG  Tesar P  Lu J  McKay RD  Geijsen N 《Cell》2008,135(3):449-461
Pluripotent stem cell lines can be derived from blastocyst embryos, which yield embryonic stem cell lines (ES cells), as well as the postimplantation epiblast, which gives rise to epiblast stem cell lines (EpiSCs). Remarkably, ES cells and EpiSCs display profound differences in the combination of growth factors that maintain their pluripotent state. Molecular and functional differences between these two stem cell types demonstrate that the tissue of origin and/or the growth factor milieu may be important determinants of the stem cell identity. We explored how developmental stage of the tissue of origin and culture growth factor conditions affect the stem cell pluripotent state. Our findings indicate that novel stem cell lines, with unique functional and molecular properties, can be generated from murine blastocyst embryos. We demonstrate that the culture growth factor environment and cell-cell interaction play a critical role in defining several unique and stable stem cell ground states.  相似文献   

16.
17.
Interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor induce the rapid phosphorylation of the c-raf protein in the growth factor-dependent FDC-P1 and DA-3 murine myeloid cell lines. Furthermore, immunoprecipitates of c-raf isolated from growth factor-stimulated cells demonstrate a marked increase in intrinsic protein kinase activity as measured in vitro. IL-3 and granulocyte-macrophage colony-stimulating factor induce phosphorylation of c-raf at both serine and tyrosine residues. Antiphosphotyrosine immunoprecipitates from IL-3-stimulated cells demonstrate the rapid and coordinate phosphorylation of both c-raf and a protein co-migrating with the 140-kDa putative IL-3 receptor component. Collectively, the findings of rapid and coordinate ligand-induced phosphorylation of a potential IL-3 growth factor receptor component and cytoplasmic c-raf with concomitant c-raf activation provide a cogent sequential molecular model for linking external growth stimuli to intracellular signal transduction events.  相似文献   

18.
19.
Stroma-mediated myelopoiesis depends upon growth factors and an appropriate intercellular microenvironment. Previous studies have demonstrated that gangliosides, produced by hepatic stromal cell types, are required for optimal myelosupportive function. Here, we compared the mielossuportive functions of a bone marrow stroma (S17) and skin fibroblasts (SF) regarding their ganglioside pattern of synthesis and shedding. The survival and proliferation of a myeloid precursor cell (FDC-P1) were used as reporter. Although the ganglioside synthesis of the two stromal cells was similar, their relative content and shedding were distinct. The ganglioside requirement for mielossuportive function was confirmed by the decreased proliferation of FDC-P1 cells in ganglioside synthesis-inhibited cultures and in presence of an antibody to GM3 ganglioside. The distinct mielossuportive activities of the S17 and SF stromata may be related to differences on plasma membrane ganglioside concentrations or to differences on the gangliosides shed and their subsequent uptake by myeloid cells, specially, GM3 ganglioside.  相似文献   

20.
An immunotoxin was synthesized with pokeweed antiviral protein and an IgG1 monoclonal antibody directed against human B and pre-B cells. The B43 murine monoclonal antibody does not react with normal human bone marrow precursor cells. The immunotoxin bound to all Burkitt's lymphoma cell lines that were tested but not to human peripheral blood T cells. The ability of antibody-toxin conjugate to inhibit human lymphoblast cell lines was checked in a clonogenic assay system. The immunotoxin in the presence of chloroquine elicited 5.8 logs of killing of Burkitt's lymphoma cells (B-ALL). The efficient inhibition of clonogenic growth of B-ALL cells was not affected by the presence of normal bone marrow cells. The immunotoxin was not very toxic to pluripotent stem cells; less than 50% of the stem cells were lost under conditions where 5.6 logs of clonogenic lymphoma cells were eliminated from a 100-fold excess of normal marrow cells. Further, when assayed by long-term human bone marrow cultures, immunotoxin treatment did not result in a significant loss of pluripotent precursor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号