首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of selenoprotein P as a selenium supply protein.   总被引:10,自引:0,他引:10  
Selenium (Se) is well known to be essential for cell culture when using a serum-free medium, but not when a medium containing serum is used. This finding suggests that serum contains some usable form of Se. To identify the Se-supplier, T-lymphoma (Jurkat) cells were cultured for 3 days in the presence of human serum immunodepleted of Se-containing serum protein, selenoprotein P or extracellular glutathione peroxidase. The Se-dependent enzyme activities (glutathione peroxidases and thioredoxin reductase) and Se content within the cells markedly decreased only when cultured with selenoprotein P-depleted serum. Compared with other Se-containing proteins, the addition of purified selenoprotein P to the selenoprotein P-depleted serum or a serum-free medium was the most effective for the recovery of cellular glutathione peroxidase activity (index of Se status). These results suggest that selenoprotein P functions as a Se-supply protein, delivering Se to the cells.  相似文献   

2.
The reduced glutathione level in human diploid fibroblasts was increased by the addition of N-acetylcysteine or reduced glutathione ethylester into the culture medium, while it was decreased by the addition of L-buthionine-(R,S)-sulfoximine or diethyl maleate. The hyperbaric oxygen-induced reduction in colony-forming ability was prevented in the N-acetylcysteine- or reduced glutathione ethylester-treated cells, and enhanced in the L-buthionine-(R,S)-sulfoximine- or diethyl maleate-treated cells. The extent of the growth inhibition is well correlated with the cellular glutathione level. It is deduced that glutathione is an important safeguard against the oxygen-induced growth inhibition of human diploid cells.  相似文献   

3.
Using primary cultures of adult rat hepatocytes, the regulation of the following lipogenic enzymes was studied: glucose-6-phosphate dehydrogenase, malic enzyme, ATP-citrate lyase, acetyl-CoA carboxylase, fatty acid synthetase, and stearoyl-CoA desaturase. The addition to the culture medium of either insulin or triiodothyronine produced a 2-3-fold increase in each of the individual enzyme activities whereas glucagon slightly decreased enzyme activities. The addition to the medium of 8-bromoguanosine 3,'5'-monophosphate had no effect on any of the enzyme activities unless glucose was also added to the culture medium. Glucose addition alone to the culture medium was without any effect; however, glucose enhanced the stimulation of enzyme activity due to insulin. The addition of fructose or glycerol, even in the absence of insulin, increased the activities of each of the enzymes studied 2-3-fold. The increases in enzyme activity brought about by insulin or fructose were apparently the result of de novo enzyme synthesis, as indicated by the observation that the increases were not noted in the presence of cordycepin or cycloheximide. Immunoprecipitation of ATP-citrate lyase from hepatocytes pulse-labeled with [3H]leucine indicated that the induction of this enzyme in response to the addition of fructose or glycerol to the culture medium was the result of an increase in the rate of synthesis of the enzyme. These results indicate that the activity and synthesis of individual enzymes involved in lipogenesis are increased in response to the metabolism of carbohydrate independently in part from hormonal effects.  相似文献   

4.
The catalytic activity of yeast glutathione reduetase at pH 7.6 is sensitive to the sodium phosphate buffer concentration and the presence of monovalent sodium salts in the assay medium. Low concentrations of sodium phosphate activate and high concentrations inhibit enzymatic activity. The optimal concentration is at about 0.06 m sodium phosphate. In the presence of 0.06 m sodium phosphate, addition of a variety of monovalent sodium salts results in inhibition of enzymatic activity, the inhibition being competitive with respect to NADPH and noncompetitive with respect to oxidized glutathione. At suboptimal concentrations of sodium phosphate, addition of monovalent sodium salts activates enzymatic activity. In addition, at suboptimal sodium phosphate concentration Lineweaver-Burk plots of initial velocity at constant NADPH concentration with oxidized glutathione as the variable substrate are nonlinear, being concave down. The nonlinear behavior can be eliminated by addition of 0.1 m sodium chloride. It is concluded that there are at least two specific anion binding sites at or near the enzyme active site. The anion inhibition is explained in terms of an ordered sequential mechanism for glutathione reduetase. The anion activation is analyzed in terms of a change of reaction pathway, the reactive enzyme species being dependent upon the oxidized glutathione concentration.  相似文献   

5.
1. The ;initial' 5-aminolaevulinate synthetase activity, that is the activity observed immediately after cell disruption, in extracts prepared from unharvested semianaerobically grown Rhodopseudomonas spheroides, was twice that observed under the same assay conditions in extracts prepared from harvested cells. 2. The effect of oxygenation of a culture on the ;maximum' aminolaevulinate synthetase activity, that is the activity observed 1h after disruption of harvested cells, is markedly influenced by the contents of the growth medium. Oxygenation of organisms for 1h in the medium in which they have grown produces an 80-90% decrease in maximum activity, whereas similar treatment of organisms resuspended in fresh medium produces less than a 40% decrease. 3. This protective effect of fresh medium is absolutely dependent on the presence of sulphate. When cells are suspended in sulphate-deficient fresh medium, the maximum activity falls by 65-75% even without oxygenation. A high maximum activity is regenerated when sulphate is resupplied. 4. When organisms are oxygenated in the medium in which they have grown, the cellular contents of GSH+GSSG and cysteine+cystine fall very markedly and homolanthionine is formed. Both the fall in aminolaevulinate synthetase activity and the changes in sulphur metabolism are largely prevented by the addition of compounds which stimulate synthesis of cysteine de novo or inhibit the conversion of cysteine S into homocysteine S. 5. The maximum aminolaevulinate synthetase activity was directly proportional to the GSH+GSSG content of all cell preparations. In glutathione-depleted extracts the ;low'-activity enzyme could be re-activated in vitro by the addition of GSH, GSSG, cysteine or cystine, whereas in extracts with a high glutathione content the ;high'-activity enzyme was unaffected by these sulphur compounds. 6. The activation of low-activity enzyme with exogenous sulphur compounds was prevented by excluding air or by adding NADH. Studies with purified enzyme indicate that sulphur compounds do not interact directly with the enzyme, but that their effect is mediated by a number of other endogenous factors.  相似文献   

6.
Cystine content of skin fibroblasts derived from patients with cystinosis was decreased by inhibitors of gamma-glutamyl transpeptidase, the initial enzyme in glutathione catabolism. The addition of maleate or the gamma-glutamyl hydrazone of alpha-ketobutyric acid to culture medium (1-20 mM) resulted in dose-dependent decreases of up to 55% on intracellular cystine content of cystinotic cells in 24 h. L-Serine in sodium borate buffer (40 mM each) produced similar results and further decreased cystine levels to 14% of cystinotic control values after 10 days incubation. Analysis of intracellular amino acids showed that, in general, other amino acids remained unchanged following serine-borate treatment. These results suggest that cystine storage in cystinotic tissues may be related to metabolism of glutathione.  相似文献   

7.
beta-D-glucosidase in Streptomyces granaticolor is an inducible enzyme. Methyl-beta-D-glucoside or cellobiose, added to a glycerol-containing medium, are most suitable inducers. The activity of beta-D-glucosidase in a culture fully induced by cellobiose is 50 times higher than the basal level of the enzyme. beta-D-glucosidase is an intracellular enzyme, whose inducibility differ with culture age and reaches its maximum in a 10-h-old mycelium. The enzyme synthesis begins 2 h after the addition of the induced and reaches its maximum after a 10-h-induction.  相似文献   

8.
Growth of murine hemopoietic cells in culture requires the presence of a stimulator of stem cell proliferation, "colony stimulating factor" (CSF). A widely used source of CSF is lung conditioned medium (LCM). We have earlier shown that the great variability of CSF activities in different batches of LCM is due to varying amounts of inhibitor(s). The present study expands the observation that the addition of ascorbic acid to the murine bone marrow soft agar assay system removes the inhibitory activity. The vitamin probably acts as an antioxidant or free radical scavenger, since addition of reduced (but not oxidized) glutathione, cysteine, dithiothreitol or 2-mercaptoethanol to the cultures also inactivates the endogeneous inhibitor. Cysteine and glutathione gave the highest colony numbers, were active at concentrations present in body fluids and did not inhibit colony growth even at concentrations ten times higher than optimum. No synergistic effects could be observed between the different antioxidants. At optimum concentration (usually 0.45 mmol/l) the otherwise bell-shaped dose-response curve for conditioned medium changed to a sigmoid curve. Antioxidants had no growth promoting effect in the absence of CSF. The presence of cysteine or vitamin C revealed CSF-like activity in conditioned media of tissues not considered to be potent producers of such factors. It has been reported that individual batches of foetal calf serum contain different levels of reduced glutathione, and we suggest that one of the batch variable growth regulators in foetal calf serum may be reduced glutathione. The results indicate a possible physiological role of antioxidants in granulopoiesis and suggest that cysteine or reduced glutathione should be freshly added to culture systems assaying CSF and/or granulocyte macrophage progenitor cells.  相似文献   

9.
10.
The antioxidant enzyme glutathione peroxidase 4 (GPx4) is capable of reducing complex lipid hydroperoxides in addition to hydrogen peroxide and organic hydroperoxides. Mammals express three GPx4 isoforms that are targeted to nucleoli, mitochondria or cytosol via variable amino termini. To better understand the role of this important antioxidant enzyme in marine finfish, we determined the subcellular localisation of a GPx4 homologue from southern bluefin tuna (Thunnus maccoyii; SBT). We created constructs for the expression of the selenocysteine-to-cysteine mutant of SBT GPx4 (GPx4C) tagged with enhanced green fluorescent protein (EGFP), including or lacking a putative amino-terminal signal peptide, and expressed the fusion proteins in a fish cell line. Fluorescence microscopy revealed that the full-length GPx4C-EGFP fusion protein localised to the trans-Golgi, suggesting that tuna GPx4 may be directed to the secretory pathway. Anti-GFP immunoblotting of cell lysates and proteins from culture media showed that the secretion of SBT GPx4 into the culture medium required an amino-terminal signal peptide. According to available sequence data, the SBT GPx4 isoform studied here is representative of other piscine GPx4 isoforms, suggesting that the secretion of at least one GPx4 isoform may be common amongst teleost fish.  相似文献   

11.
Glutamate binds to both excitatory neurotransmitter binding sites and a Cl(-)-dependent, quisqualate- and cystine-inhibited transport site on brain neurons. The neuroblastoma-primary retina hybrid cells (N18-RE-105) are susceptible to glutamate-induced cytotoxicity. The Cl(-)-dependent transport site to which glutamate and quisqualate (but not kainate or NMDA) bind has a higher affinity for cystine than for glutamate. Lowering cystine concentrations in the cell culture medium results in cytotoxicity similar to that induced by glutamate addition in its morphology, kinetics, and Ca2+ dependence. Glutamate-induced cytotoxicity is directly proportional to its ability to inhibit cystine uptake. Exposure to glutamate (or lowered cystine) causes a decrease in glutathione levels and an accumulation of intracellular peroxides. Like N18-RE-105 cells, primary rat hippocampal neurons (but not glia) in culture degenerate in medium with lowered cystine concentration. Thus, glutamate-induced cytotoxicity in N18-RE-105 cells is due to inhibition of cystine uptake, resulting in lowered glutathione levels leading to oxidative stress and cell death.  相似文献   

12.
The distribution of glutathione S-transferase (GST) (EC 2.5.1.18) in yeasts was investigated. High enzyme activity was found in some strains of Issatchenkia and Candida. Of 168 strains tested, Iss. orientalis showed the highest activity. The enzyme activity exists constitutively in the yeast cells but it increased with the addition of an enzyme substrate, o-dinitrobenzene, to the culture medium. Moreover, the addition of l-cysteine and glycine to the medium also increased the enzyme activity. This enzyme was so unstable that it lost almost all its activity on ammonium sulfate precipitation and 93% of its activity was lost when it was stored at 4°C for two weeks in a soluble state. We found that it was stabilized considerably in a solution containing 20% glycerol, 1 mm EDTA, 2 mm DTT and 10 mm sodium sulfite.  相似文献   

13.
Penicillium chrysogenum produced glutathione after growth in a defined medium containing 10 mM-NH4Cl as the sole source of nitrogen. The use of higher ammonium concentrations (100 mM) resulted in stimulation of growth and glutathione formation. In addition, increases in the intracellular pools of glutamate, alanine and glutamine, proportional to the amount of ammonium present in the medium were observed. Resting cell systems, prepared from cells previously grown with ammonium, were able to produce glutathione when incubated with ammonium or the amino acids glutamate, alanine and glutamine. A mutant lacking NADP-dependent glutamate dehydrogenase activity (which has a leaky phenotype on ammonium as sole nitrogen source) required glutamate to synthesize glutathione. Resting cell systems of this mutant, prepared from cells previously grown with ammonium, did not produce glutathione even when incubated with glutamate or glutamine. On the other hand, resting cell systems of this mutant produced glutathione if prepared from cells previously grown with glutamate. The addition of glutamate to resting cell systems of the wild-type strain stimulated the synthesis of gamma-glutamylcysteine synthetase, the first enzyme of glutathione biosynthesis.  相似文献   

14.
Effects of phenobarbital (PB) and L-methionine on 2-carboxybenzaldehyde (CBA) reductase in rat hepatocyte primary culture were examined. Inclusion of PB in the culture medium markedly enhanced the CBA reductase activity while L-methionine, which elevates the cellular glutathione (GSH) level, suppressed the stimulatory effect of PB. This suppression, though less pronounced, was also found with other precursors of GSH biosynthesis. GSH-depletors, buthionine sulfoximine (BSO) or diethylmaleate (DEM), enhanced the CBA reductase activity suggesting that GSH plays an important role in enzyme induction.  相似文献   

15.
We studied the intracellular content of reduced (GSH) and oxidized (GSSG) glutathione, glutathione reductase activity, glutathione-S-transferase, and ascorbate peroxidase in morphogenic and nonmorphogenic Tatar buckwheat calli during the culture cycle as well as under the treatment with D,L-buthionine-S,R-sulfoximine (BSO), an inhibitor of γ-glutamylcysteine synthase, the first enzyme of glutathione biosynthesis. We found that, during passaging, cultures only slightly differed in total glutathione content; however, the content of GSH was higher in the morphogenic culture, whereas the content of GSSG was higher in the nonmorphogenic culture. In the morphogenic callus, the glutathione-S-transferase activity was 10–20 times higher and the glutathione reductase activity was 2–2.5 times lower than in the nonmorphogenic callus. Under the treatment with BSO, the decrease in the GSH content in the morphogenic callus was temporary (on day 6–8 of passage), whereas that in the nonmorphogenic callus decreased within a day and remained lower than in the control throughout the entire passage. In the morphogenic callus, BSO did not affect the content of GSSG, whereas it caused GSSG accumulation in the nonmorphogenic callus. These differences are probably due to the fact that, in the BSO-containing medium, glutathione reductase is activated in the morphogenic callus and, conversely, inhibited in the nonmorphogenic callus. Although BSO caused a decrease in the total glutathione content only in the nonmorphogenic culture, the cytostatic effect of BSO was more pronounced in the morphogenic callus. In addition, BSO also had a negative effect on the differentiation of proembryonic cell complexes in the morphogenic callus. The role of the glutathione redox status in maintaining the embryogenic activity of cultured plant cells is discussed.  相似文献   

16.
In derepressed yeast cells the cytoplasmic malate dehydrogenase activity disappears after addition of glucose to the culture medium. Using specific antisera, it seemed possible to isolate an inactive enzyme protein if the inactivation resulted from an allosteric inhibition or from a chemical modification. The present studies show that after the inactivation an inactive enzyme protein is immunologically not detectable. Together with the irreversibility of the inactivation in vivo and in vitro this result supports a proteolytic mechanism of enzyme inactivation.  相似文献   

17.
Continuous culture and fed-batch fermentations were used to test the behavior of the system Bacillus subtilis DN1885(pCH7) that synthesizes a recombinant beta-1,4-endoglucanase. Continuous culture experiments were focused on the study of the instability aspects of the system as well as determination of the biomass growth rate range at which the recombinant enzyme synthesis was improved. Fed-batch fermentations were carried out to study the possibility of enhancing recombinant enzyme synthesis through the control of medium addition. It was found that, in continuous culture fermentations, the culture is less unstable at low dilution rates (dilution rate < 0.1 h(-)(1)). Also, low dilution rates give a higher specific recombinant enzyme concentration (10 times more than that obtained at high dilution rates). In fed-batch fermentation, the final recombinant enzyme concentration can be manipulated through the medium addition strategy. To increase the recombinant enzyme concentration, the carbon source has to be fed slowly, otherwise enzyme synthesis is impaired due to catabolite repression. Therefore, an increase in the biomass concentration does not necessarily imply an increase in the recombinant enzyme concentration. Higher recombinant enzyme concentrations were found in fed-batch fermentations compared to those obtained in continuous culture.  相似文献   

18.
The addition of 1.5 mM putrescine to the culture medium facilitated the conversion of protocorm-like bodies (PLBs) of Dendrobium officinale to shoots. The administration of 1.0 mM of the polyamine inhibitor, α-DL-difluoromethylarginine, decreased the conversion of PLBs to shoots. Compared to the control, the PLBs treated with 1.5 mM putrescine had higher levels of total intracellular free polyamines. The enhanced conversion of PLBs to shoots following the addition of putrescine was accompanied by an increase in the ratio of total cytokinins (CTKs) to indole-3-acetic acid (IAA). Analysis of enzyme activities indicated that the increased endogenous level of total CTKs driven by putrescine was associated with the inhibition of CTK decomposition by CTK oxidase, while the decreased endogenous level of IAA was associated with the promotion of IAA decomposition by IAA oxidase. In addition, putrescine increased the ratio of reduced glutathione to oxidized glutathione in the conversion process of PLBs to shoots.  相似文献   

19.
L-Proline supplementation of the medium for collagen gel cultures of hepatocytes has been shown to improve albumin secretion. A study was made as to whether L-proline is also essential for the maintenance of xenobiotic biotransformation capacities in collagen gel sandwich and immobilisation cultures of rat and human hepatocytes. Key phase I (cytochrome P450-dependent monooxygenase [CYP)] and microsomal epoxide hydrase [mEH]) and phase II (glutathione S-transferase [GST]) biotransformation enzyme activities and the secretion of albumin in the culture medium were assessed in the absence and presence of L-proline. CYP and mEH activities were not affected by the addition of L-proline, whereas phase II alpha-Class GST activity of rat hepatocytes in collagen cultures was decreased. Species differences were demonstrated, as human hepatocytes showed a better maintenance of GST activities than their rat counterparts in the presence of L-proline. Albumin secretion, often considered to be a marker for differentiated cell function, does not parallel the biotransformation capacities of the hepatocytes in culture. Additional results demonstrated an L-proline-mediated enhancement of the proliferation rate of contaminating stellate cells in conventional monolayer culture. Transdifferentiation of stellate cells to proliferating myofibroblasts, along with an increased albumin secretion and collagen synthesis, are characteristic of fibrotic liver. Since the last two phenomena have been observed in L-proline-supplemented collagen gel cultures, it can be concluded that when stable collagen gel cultures of rat hepatocytes are needed for long-term pharmacotoxicological studies, it is preferable to use an L-proline-free culture medium. Further studies on medium optimisation are required for hepatocytes from species other than rat.  相似文献   

20.
The changes of glutathione S-transferase activity were investigated using rat brain astroglioma C6 cells that were synchronized at different phases of the cell cycle. The enzyme showed two significant activity peaks at G2 and G1 phases. Furthermore, when C6 glioma cells were exposed to a culture medium supplemented with specific glutathione S-transferase inhibitors, ethacrynic acid and caffeic acid, cell growth was remarkably suppressed. These results suggest that glutathione S-transferases may be closely related to the mechanism of cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号