首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary We have found evidence for two beta-like myosin heavy chains in humans, one cardiac and one skeletal. The cDNA sequences of the cardiac beta myosin heavy chain cDNA clone pHMC3 and the skeletal beta-like myosin heavy chain cDNA clone pSMHCZ, were compared to each other. It was found that the 3 untranslated regions as well as 482 nucleotides specifying the carboxyl coding region, were 100% homologous. Further examination revealed that the skeletal clone pSMHCZ diverges from the human cardiac beta myosin heavy chain cDNA clone pHMC3 at the 5 end. We present evidence in this report which indicates that the cardiac beta myosin heavy chain mRNA is expressed in skeletal muscle tissues. The human cardiac beta myosin heavy chain cDNA clone, pHMC3, which codes for a portion of the light meromyosin section of the myosin heavy chain, was used as a probe for S1 nuclease mapping studies with RNA derived from cardiac tissue, smooth muscle and skeletal muscle tissues consisting of fast-twitch, slow-twitch and mixed fast- and slow-twitch muscle fibres. Two probes were used to examine the expression of the mRNA. One probe (406 nucleotides) constitutes the 3 untranslated region and a portion of the coding region of the beta cardiac myosin heavy chain cDNA clone, which is 100% homologous to pSMHCZ, the skeletal cDNA clone. The other constitutes the majority of the coding region (1017 nucleotides) of the cardiac clone pHMC3 in which the first 216 nucleotides from the labelled end are 100% homologous to the skeletal clone pSMHCZ. In the soleus muscle, which is rich in slow-twitch type I muscle fibres, the expression of the cardiac beta myosin heavy chain mRNA was very prominent. In gastrocnemius muscle, a mixed fibre muscle, the expression of this mRNA was detected to a lesser degree than that for the soleus muscle. In vastus lateralis and vastus medialis, which consist of predominantly type II, fast-twitch fibres, there were trace amounts of the cardiac beta myosin heavy chain mRNA. When expression of this mRNA was tested in smooth muscle tissue none could be detected.  相似文献   

2.
The two cardiac myosin heavy chain isoforms, alpha and beta, differ functionally, alpha Myosin exhibits higher actin-activated ATPase than does beta myosin, and hearts expressing alpha myosin exhibit increased contractility relative to hearts expressing beta myosin. To understand the molecular basis for this functional difference, we determined the complete nucleotide sequence of full-length rat alpha and beta myosin heavy chain cDNAs. This study represents the first opportunity to compare full-length fast ATPase and slow ATPase muscle myosin sequences. The alpha and beta myosin heavy chain amino acid sequences are more related to each other than to other sarcomeric myosin heavy chain sequences. Of the 1938 amino acid residues in alpha and beta myosin heavy chain, 131 are non-identical with 37 non-conservative changes. Two-thirds of these non-identical residues are clustered, and several of these clusters map to regions that have been implicated as functionally important. Some of the regions identified by the clusters of non-identical amino acid residues may affect actin binding, ATP hydrolysis and force production.  相似文献   

3.
Two cardiac myosin heavy chain cDNA clones, pMHC alpha 252 and pMHC beta 174, were constructed using rabbit ventricular mRNA isolated from adult thyrotoxic and normal hearts, respectively. The complete DNA sequences of the 2.2- and 1.4-kilobase inserts of pMHC beta 174 and pMHC alpha 252, respectively, were obtained. The 736 amino acids specified by pMHC beta 174 begin 439 (1.3 kilobases) residues from the heavy chain NH2 terminus and include a 400-amino acid segment of subfragment 1 and the entire subfragment 2 region. Clone pMHC alpha 252 encodes 465 amino acids encompassing all of subfragment 2 and a portion of light meromyosin. Comparison of these two clones revealed extensive sequence overlap which included 1107 nucleotides specifying a 369-amino acid segment corresponding to subfragment 2. Within this region 78 (7%) base and 32 (8.7%) amino acid mismatches were noted. These differences were clustered within discrete regions, with the subfragment 1/subfragment 2 junctional region being particularly divergent. Structural differences between pMHC alpha 252 and pMHC beta 174 indicate that these two clones represent two similar but distinct myosin heavy chain genes whose expression is responsible for ventricular myosin heavy chain isoforms alpha and beta, respectively. The derived amino acid sequences of both clones exhibit extensive homology (greater than 81%) with sequences obtained by direct analysis of adult rabbit skeletal muscle myosin heavy chain protein. The sequences corresponding to the subfragment 2 region are consistent with an alpha-helical conformation with a characteristic 7-residue periodicity in the linear distribution of nonpolar amino acids. Conversely, subfragment 1 sequences specified by pMHC beta 174 suggest a folded highly irregular structure.  相似文献   

4.
In an attempt to define myosin heavy chain (MHC) gene organization and expression in adult human skeletal muscle, we have isolated and characterized genomic sequences corresponding to different human sarcomeric MHC genes (1). In this report, we present the complete DNA sequence of two different adult human skeletal muscle MHC cDNA clones, one of which encodes the entire light meromyosin (LMM) segment of MHC and represents the longest described MHC cDNA sequence. Additionally, both clones provide new sequence data from a 228 amino acid segment of the MHC tail for which no protein or DNA sequence has been previously available. One clone encodes a "fast" form of skeletal muscle MHC while the other clone most closely resembles a MHC form described in rat cardiac ventricles. We show that the 3' untranslated region of skeletal MHC cDNAs are homologous from widely separated species as are cardiac MHC cDNAs. However, there is no homology between the 3' untranslated region of cardiac and skeletal muscle MHCs. Isotype-specific preservation of MHC 3' untranslated sequences during evolution suggests a functional role for these regions.  相似文献   

5.
A full length (25,000 base-pair) myosin heavy chain gene completely contained within a single cosmid clone was isolated from a Syrian hamster cosmid genomic library. Sequence comparison of the 3' untranslated region indicated the presence of a 75% homology with the rat embryonic myosin heavy chain gene. Extensive 5' flanking region regulatory element conservation was also found when the sequence was compared to the rat myosin heavy chain gene. S1 nuclease digestion analysis, however, indicated that the Syrian hamster myosin heavy chain gene exhibited expression in adult Syrian hamster ventricular tissue, as well as the adult vastus medialis, a fast twitch skeletal muscle. Expression also appears to be enhanced in myopathic relative to control hearts. This myosin heavy chain gene is neither the alpha nor beta cardiac myosin heavy chain gene, but is a unique, previously unrecognized, myosin heavy chain gene present in both myocardial and skeletal muscle tissues.  相似文献   

6.
7.
We have isolated and sequenced the gene and the cDNA coding for the human cardiac beta-myosin heavy chain (designated MYH7). The gene is 22,883 bp long. The 1935 amino acids of this protein (Mr223,111) are encoded by 38 exons. The 5' untranslated region (86 bp) is split by two introns. The 3' untranslated region is 114 bp long. Three Alu repeats were identified within the gene and a fourth one in the 3' flanking intergenic region. The molecular organization of this gene reflects the conservative pattern with respect to size, coding ratio, and number or position of introns characteristic of vertebrate sarcomeric myosin heavy chain genes. The protein sequence of the human beta-heavy chain was compared with corresponding (homologous) sequences of rabbit, rat, and hamster as well as with the (heterologous) embryonic heavy chain sequences of rat, chicken, and man. The results show that protein subregions responsible for basic functions of myosin heavy chains (nucleotide binding and actin binding) are very similar in homologous and heterologous heavy chains. Regions that differ in their primary sequences in heterologous heavy chains appear to be highly conserved within mammalian beta-myosin heavy chains. Constant and variable subregions of heavy chains are discussed in terms of functional significance and evolutionary relatedness.  相似文献   

8.
Human myosin heavy chains are encoded by a multigene family consisting of at least 10 members. A gene-specific oligonucleotide has been used to isolate the human beta myosin heavy chain gene from a group of twelve nonoverlapping genomic clones. We have shown that this gene (which is expressed in both cardiac and skeletal muscle) is located 3.6kb upstream of the alpha cardiac myosin gene. We find that DNA sequences located upstream of rat and human alpha cardiac myosin heavy chain genes are very homologous over a 300bp region. Analogous regions of two other myosin genes expressed in different muscles (cardiac and skeletal) show no such homology to each other. While a human skeletal muscle myosin heavy chain gene cluster is located on chromosome 17, we show that the beta and alpha human cardiac myosin heavy chain genes are located on chromosome 14.  相似文献   

9.
10.
Cruciferin (12 S globulin) is a large, neutral, oligometric protein synthesized in rapeseed (Brassica napus) during seed development. It is the major seed protein and is composed of six subunit pairs. Each of these pairs is synthesized as a precursor containing one heavy alpha-chain and one light beta-chain. Electrophoretic analysis of cruciferin showed that four different alpha- and four different beta-chains exist. A cruciferin clone was selected from an embryo cDNA library. This clone, pCRU1, contains a 1518-base pair open reading frame corresponding to a truncated NH2-terminal signal sequence followed by an alpha-chain of 296 and a beta-chain of 190 amino acid residues. Individual cruciferin chains as well as peptides thereof were subjected to NH2-terminal amino acid sequence analysis. The sequences obtained from a specific alpha- and beta-chain pair (alpha 1 and beta 1) showed total identity with the deduced amino acid sequence from pCRU1. Further comparisons revealed that a previously characterized cruciferin cDNA clone encodes one of the precursors for the closely related alpha 2/ alpha 3-beta 2/beta 3 subunits. The deduced amino acid sequences of the two cDNA clones display 64% similarity.  相似文献   

11.
12.
We have isolated a human cDNA which corresponds to a developmentally regulated sarcomeric myosin heavy chain. RNA hybridization and DNA sequence analysis indicate that this cDNA, called SMHCP, encodes a perinatal myosin heavy chain isoform. The nucleotide and deduced amino acid sequences of the 3.4-kb cDNA insert show strong homology with other sarcomeric myosin heavy chains. The strongest homology is to a previously described 970-bp cDNA encoding a rat perinatal isoform (Periasamy, M., D. F. Wieczorek, and B. Nadal-Ginard. 1984. J. Biol. Chem. 259:13573-13578). The homology between the analogous human and rat perinatal myosin heavy chain cDNAs is maintained through the highly isoform-specific final 20 carboxyl-terminal amino acids, as well as the 3' untranslated region. Ribonuclease protection studies show that the mRNA encoding this isoform is expressed at high levels in 21-wk fetal skeletal tissue and not in fetal cardiac muscle. In contrast to the rat perinatal isoform, which was not found to be expressed in adult hind-leg tissue, the gene encoding SMHCP continues to be expressed in adult human skeletal tissue, but at lower levels relative to fetal skeletal tissue.  相似文献   

13.
DNA from a rat hippocampus cDNA library and sets of highly degenerate oligonucleotide primers directed toward conserved regions of previously cloned G-protein receptors were used in the polymerase chain reaction to selectively amplify and clone new members of this gene family. A human hippocampus cDNA library was screened with a 610 base pair fragment generated by PCR and a cDNA clone, H318/3, was isolated. The deduced amino acid sequence of this clone encoded a protein of 501 amino acids that showed strong sequence homology to previously cloned G-protein receptors. Nucleotide sequence analysis revealed clone H318/3 was 78% homologous to a rat alpha 1A adrenergic receptor with homology being 95% when comparisons were made in the region that lies between the first to the seventh transmembrane domains. Based on this high degree of sequence homology, we conclude that clone H318/3 represents a cDNA for a human alpha 1A adrenergic receptor.  相似文献   

14.
15.
We have isolated and characterized two distinct myosin heavy chain cDNA clones from a neonatal rat aorta cDNA library. These clones encode part of the light meromyosin region and the carboxyl terminus of smooth muscle myosin heavy chain. The two rat aorta cDNA clones were identical in their 5' coding sequence but diverged at the 3' coding and in a portion of the 3' untranslated regions. One cDNA clone, RAMHC21, encoded 43 unique amino acids from the point of divergence of the two cDNAs. The second cDNA clone, RAMHC 15, encoded a shorter carboxyl terminus of nine unique amino acids and was the result of a 39 nucleotide insertion. This extra nucleotide sequence was not present in RAMHC21. The rest of the 3' untranslated sequences were common to both cDNA clones. Genomic cloning and DNA sequence analysis demonstrated that an exon specifying the 39 nucleotides unique to RAMHC15 mRNA was present, together with the 5' upstream common exons in the same contiguous stretch of genomic DNA. The 39 nucleotide exon is flanked on either side by two relatively large introns of approximately 2600 and 2700 bases in size. RNase protection analysis indicated that the two corresponding mRNAs were coexpressed in both vascular and non-vascular smooth muscle tissues. This is the first demonstration of alternative RNA processing in a vertebrate myosin heavy chain gene and provides a novel mechanism for generating myosin heavy chain protein diversity in smooth muscle tissues.  相似文献   

16.
J P Kinet  H Metzger  J Hakimi  J Kochan 《Biochemistry》1987,26(15):4605-4610
Rat mast cells and a neoplastic analogue such as rat basophilic leukemia (RBL) cells have receptors that have exceptionally high affinity for immunoglobulin E (IgE). When aggregated, these receptors induce cellular degranulation. The alpha chain of the receptor contains the binding site for IgE; the function(s) of the noncovalently associated beta and gamma chains is (are) still undefined. Using a cDNA library constructed from the mRNA of RBL cells, we have isolated a cDNA clone whose sequence predicts a putative 23-residue signal peptide, followed by a sequence that accurately predicts the amino acid composition, the peptide molecular weight, and six peptide sequences (encompassing 59 residues or 26% of the total number) determined for the alpha chain by direct analysis. These findings provide strong evidence that the cDNA codes for the alpha chain, even though expression has not been unambiguously achieved. The sequence suggests that the alpha chain contains a 180-residue extracellular portion with two homologous domains of approximately 35 residues, a 20-residue transmembrane segment containing an aspartic acid, and a 27-residue cytoplasmic portion containing 9 basic amino acids. The sequence shows no homology with the low-affinity receptor for IgE from lymphocytes but over 30% homology with an Fc gamma receptor.  相似文献   

17.
Complementary DNA encoding rat protein phosphatase 2C alpha was obtained from a liver library and used to isolate the homologous cDNAs from rabbit liver and human teratocarcinoma libraries. The amino acid sequences of the three enzymes deduced from the cDNA (382 amino acids) were extremely similar (greater than 99% identity), the maximum number of differences (between rat and human) being four. Amino acid sequences of peptides corresponding to 238 residues (61%) of the protein phosphatase 2C beta isoform from rabbit skeletal muscle were determined and showed 12 differences from the recently published sequence of the rat liver enzyme deduced from the cDNA (95% identity).  相似文献   

18.
Human liver cathepsin L consists of a heavy chain and a light chain with Mr values of 25,000 and 5000 respectively. The chains have been purified and their N-terminal amino acid sequences have been determined. The 40 amino acids determined from the heavy chain and 42 amino acids sequenced in the light chain are homologous with the N-terminal and C-terminal regions respectively of the superfamily of cysteine proteinases. Therefore it is likely that the two chains of cathepsin L are derived by proteolysis of a single polypeptide precursor. Of the amino acids sequenced, 81% are identical with the homologous portions of a protein sequence for a major cysteine proteinase predicted from a cDNA clone from a mouse macrophage cell line. This is the closest relative amongst the known sequences in the superfamily and strongly indicates that the protein encoded by this mRNA is cathepsin L. The mouse protein is also probably the major excreted protein of a transformed cell line [Gal & Gottesman (1986) Biochem. Biophys. Res. Commun. 139, 156-162]. The heavy chain is identical in only 71% of its residues with the sequence of ox cathepsin S, providing further evidence that this latter enzyme is probably not a species variant of cathepsin L. The relationship with a second unidentified cathepsin cDNA clone from a bovine library is much weaker (41% identity), and so this clone remains unidentified.  相似文献   

19.
We previously reported the characterization of a rabbit uterus cDNA clone (SMHC29) which encoded part of the light meromyosin of smooth muscle myosin heavy chain (Nagai, R., Larson, D.M., and Periasamy, M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 1047-1051). We have now characterized a second cDNA clone (SMHC40) which also encodes part of the light meromyosin but differs from SMHC29 in the following respects. Nucleotide sequence analysis demonstrates that the two myosin heavy chain mRNAs are identical over 1424 nucleotides but differ in part of the 3'-carboxyl coding region and a portion of the 3'-nontranslated sequence. Specifically, SMHC40 cDNA encodes a unique stretch of 43 amino acids at the carboxyl terminus, whereas SMHC29 cDNA contains a shorter carboxyl terminus of 9 unique amino acids which is the result of a 39-nucleotide insertion. Recent peptide mapping of smooth muscle myosin heavy chain identified two isotypes with differences in the light meromyosin fragment that were designated as SM1 (204 kDa) and SM2 (200 kDa) type myosin (Eddinger, T. J., and Murphy, R.A. (1988) Biochemistry 27, 3807-3811). In this study we present direct evidence that SMHC40 and SMHC29 mRNA encode the two smooth muscle myosin heavy chain isoforms, SM1 and SM2, respectively, by immunoblot analysis using antibodies against specific carboxyl terminus sequences deduced from SMHC40 and SMHC29 cDNA clones.  相似文献   

20.
Gliadins, the major wheat seed storage proteins, are encoded by a multigene family. Northern blot analysis shows that gliadin genes are transcribed in endosperm tissue into two classes of poly(A)+ mRNA, 1400 bases (class I) and 1600 bases (class II) in length. Using poly(A)+ RNA from developing wheat endosperm we constructed a cDNA library from which a number of clones coding for alpha/beta and gamma gliadins were identified by hybrid-selected mRNA translation and DNA sequencing. These cDNA clones were used as probes for the isolation of genomic gliadin clones from a wheat genomic library. One such genomic clone was characterized in detail and its DNA sequence determined. It contains a gene for a 33-kd alpha/beta gliadin protein (a 20 amino acid signal peptide and a 266 amino acid mature protein) which is very rich in glutamine (33.8%) and proline (15.4%). The gene sequence does not contain introns. A typical eukaryotic promoter sequence is present at -104 (relative to the translation initiation codon) and there are two normal polyadenylation signals 77 and 134 bases downstream from the translation termination codon. The coding sequence contains some internal sequence repetition, and is highly homologous to several alpha/beta gliadin cDNA clones. Homology to a gamma-gliadin cDNA clone is low, and there is no homology with known glutenin or zein cDNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号