首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
本文报告一例45,X/46,XXr嵌合体。患者徐××,表型女性,25岁,未婚。继发闭经,因阴蒂肥大而要求入院手术,维持女性。术中发现子宫为幼儿型,小而薄。右侧卵巢和输卵管缺如。左侧圆韧带薄而松弛。左侧输卵管长度正常但很细,卵巢小而薄。  相似文献   

2.
Saponification of the bis(carbamic acid ester) 1,3-C6H4(CMe2NHCO2Me)2 (1), made by the addition of methanol to commercial 1,3-C6H4(CMe2NCO)2, yielded the meta-phenylene-based bis(tertiary carbinamine) 1,3-C6H4(CMe2NH2)2 (2). Dinuclear [{(η4-1,5-C8H12)RhCl}2{μ-1,3-C6H4(CMe2NH2)2}] (3) resulted from the action of 2 on [{(η4-1,5-C8H12)Rh(μ-Cl)}2] in toluene. Combination of 2 with PdCl2 or K2[PdCl4] gave the dipalladium macrocycle trans,trans-[{μ-1,3-C6H4(CMe2NH2)2}2(PdCl2)2] (4) along with cyclometalated [{2,6-C6H3(CMe2NH2)2NC1N′}PdCl] (5). Substitution of PEt3 for the labile chlorido ligand of 5 afforded [{2,6-C6H3(CMe2NH2)2NC1, κN′}Pd(PEt3)]Cl (6). The crystal structures of the following compounds were determined: bis(carbamic acid ester) 1, ligand 2 as its bis(trifluoroacetate) salt [1,3-C6H4(CMe2NH3)2](O2CCF3)2, 2 · (HAcf)2, complexes 3 and 6, as well as 1,3-C6H4(CMe2OH)2 (the diol analogue of 2).  相似文献   

3.
Mortalin/mthsp70/PBP74/Grp75 (called mortalin hereafter), a member of the Hsp70 family of chaperones, was shown to have different subcellular localizations in normal and immortal cells. It has been assigned to multiple subcellular sites and implicated in multiple functions ranging from stress response, intracellular trafficking, antigen processing, control of cell proliferation, differentiation, and tumorigenesis. The present article compiles and reviews information on the multiple sites and functions of mortalin in different organisms. The relevance of its differential distributions and functions in normal and immortal cell phenotypes is discussed.  相似文献   

4.
Prostaglandins A2, E1, E2, methylated E2s and F2α affected erythropoiesis and/or erythropoietin (Ep) production. This action is indicated in the exhypoxic, polycythemic mouse where radioiron incorporations into RBC increased after administration of these compounds. The kidney and liver have been indicated through previous studies, to actively participate in Ep production. By the removal of one of these active sites in a murine system treated with prostaglandins it is shown that a response is reflected in Ep levels. Interference of the action of prostaglandins (PG) is altered by the removal of one of these target sites of Ep production. The erythropoietic responses elicited by PGA2, E1, and perhaps the methylated PGE2s act through the liver whereas PGE2 may operate through a renal pathway for its response. PGF reveals no effect on erythropoietic activity and is no different than that observed for vehicle-treated controls. The prostaglandins tested appear to act primarily through the kidney or liver but the possibility exists that some yet undetermined organ site may also be involved.  相似文献   

5.
Previously, tau protein kinase I/glycogen synthase kinase-3/kinase FA(TPKI/GSK-3/FA) was identified as a brain microtubule-associated tau kinase possibly involved in the Alzheimer disease-like phosphorylation of tau. In this report, we find that the TPKI/GSK-3/FA can be stimulated to phosphorylate brain tau up to 8.5 mol of phosphates per mol of protein by heparin, a polyanion compound. Tryptic digestion of32P-labeled tau followed by high-performance liquid chromatography and high-voltage electrophoresis/thin-layer chromatography reveals 12 phosphopeptides. Phosphoamino acid analysis together with sequential manual Edman degradation and peptide sequence analysis further reveals that TPKI/GSK-3//FA after heparin potentiation phosphorylates tau on sites of Ser199, Thr231, Ser235, Ser262, Ser396, and Ser400, which are potential sites abnormally phosphorylated in Alzheimer tau and potent sites responsible for reducing microtubule binding possibly involved in neuronal degeneration. The results provide initial evidence that TPKI/GSK-3/FA after heparin potentiation may represent one of the most potent systems possibly involved in the abnormal phosphorylation of PHF-tau and neuronal degeneration in Alzheimer disease brains.Abbreviations FA the activating factor of type 1 protein phosphatase - GSK-3 glycogen synthase kinase-3 - TPKI tau protein kinase I - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis - PHF paired helical filaments - HPLC high-performance liquid chromatography  相似文献   

6.
Expression of vnd in ventral, ind in intermediate, and msh in dorsal columns of fly neurectoderm, and of homologous gene families in corresponding domains of vertebrate neurectoderm, suggests that elements of dorsoventral neural patterning have been evolutionarily conserved. However, upstream signaling pathways regulating this columnar gene expression pattern appear to have diverged significantly throughout evolution. In addition, while recent loss-of-function studies in flies and mice indicate that these three genes may have a conserved role in regional specification, there is no obvious conservation of the particular cell fates deriving from corresponding domains. The three-column expression pattern may thus represent a developmental mechanism that is more resistant to evolutionary changes than genetic events upstream or downstream of it.  相似文献   

7.
Annual observations of seabirds within Prydz Bay, East Antarctica, between the 1980/1981 and 1992/1993 seasons revealed siginificant changes in abundance of the 9 resident and 15 non-resident species. An estimated 4.85 million individual residents and 2.35 million individual non-residents were present each season. For resident and non-resident species, mean abundance was 3.75 and 1.81 birds/km2, and mean biomass was 6.67 and 1.70 kg/km2, respectively. Based on estimated abundances, the total consumption of marine resources by the seabird community within Prydz Bay ranged from 471,000 to 1.1 million tonnes (mean 752,000±176,000 tonnes) per 6-month summer, or between 2.02 and 4.53 kg/km2 per day (mean 3.23±0.76 kg/km2 per day). The mean energy flux to the seabird community within Prydz Bay each summer was 3.13*1012 kJ, (range: 2.0*1012 kJ–4.4*1012 kJ), of which 66% went to the resident species. Regional abundance and biomass estimates for resident and non-resident species were both negatively correlated; when the estimated abundance and biomass of resident species were high, those of non-resident species were low. Received: 4 January 1996/Accepted: 3 July 1996  相似文献   

8.
Comprehensive structural analyses were performed for N-o-, N-m-, and N-p-nitrophenyl-2,3,4-tri-O-acetyl-β-d-xylopyranosylamines. Single-crystal X-ray diffraction data were collected and revealed that one compound under investigation undergoes temperature-dependent polymorph transitions (crystal structures of three polymorphs were obtained). The number of molecules in the independent part of the crystal unit cells was in agreement with the number of resonances in solid-state 13C NMR spectra. Therefore, the compounds exist as single polymorphs at room temperature, as confirmed by powder X-ray diffraction measurements. Significant differences in 13C chemical shifts between solution and solid-state NMR for selected carbon atoms confirmed the existence of intra- and/or intermolecular interactions.  相似文献   

9.
《Inorganica chimica acta》2006,359(5):1421-1426
Synthesis, structural characterization, and spectroscopic and magnetic properties of three new cyano-bridged 3d–4f bimetallic complexes, LnIII(DMF)4(H2O)3CrIII (CN)6 · nH2O (Ln = Nd, Sm, Gd), have been described. The Nd–Cr complex crystallizes in the monoclinic P21/n space group with the following unit cell parameters: a = 20.063(7) Å, b = 8.967(4) Å, c = 18.023(6) Å, b = 96.12(3)°, V = 3224(2) Å3, and Z = 4. The neodymium (III) ion, which adopts anti-prism eight-coordination environment, is linked to the [CrIII(CN)6]3− moiety through a bridging cyanide ligand with Nd–N = 2.550(4) Å and Nd–N–C = 164.4(4)°. The variable-temperature (0.5 T at 2–300 K) and variable-field (0–5 T at 2 and 5 K) magnetic measurements reveal that the weak interaction of Gd–Cr complexes differs from that of Nd–Cr and Sm–Cr ones mainly because of the lack of orbital angular momentum. The XPS and diffuse reflectance electronic spectra were also measured to discuss charge transfer transitions concerning π-backdonation from the viewpoint of magneto-optical functions.  相似文献   

10.
Summary Breeding ofHippolais polyglotta in the Saarland was first recorded in 1984. In 1985 in a general census study 60 territorial were mapped, 10 nests were found, an 62 individuals could be ringed. Records of old nests indicate that breeding of that species in the Saarland has already started before 1985.  相似文献   

11.
12.
Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca2+ mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca2+ in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found that the mouse ES cells are responsive to cADPR and possess the key components of the cADPR signaling pathway. In vitro cardiomyocyte (CM) differentiation of mouse ES cells was initiated by embryoid body (EB) formation. Interestingly, beating cells appeared earlier and were more abundant in CD38 knockdown EBs than in control EBs. Real-time RT-PCR and Western blot analyses further showed that the expression of several cardiac markers, including GATA4, MEF2C, NKX2.5, and α-MLC, were increased markedly in CD38 knockdown EBs than those in control EBs. Similarly, FACS analysis showed that more cardiac Troponin T-positive CMs existed in CD38 knockdown or 8-Br-cADPR, a cADPR antagonist, treated EBs compared with that in control EBs. On the other hand, overexpression of CD38 in mouse ES cells significantly inhibited CM differentiation. Moreover, CD38 knockdown ES cell-derived CMs possess the functional properties characteristic of normal ES cell-derived CMs. Last, we showed that the CD38-cADPR pathway negatively modulated the FGF4-Erks1/2 cascade during CM differentiation of ES cells, and transiently inhibition of Erk1/2 blocked the enhanced effects of CD38 knockdown on the differentiation of CM from ES cells. Taken together, our data indicate that the CD38-cADPR-Ca2+ signaling pathway antagonizes the CM differentiation of mouse ES cells.  相似文献   

13.
CD38 is a type-II transmembrane glycoprotein occurring in several hematopoietic and mature blood cells as well as in other cell types, including neurons. Although classified as an orphan receptor, CD38 is also a bifunctional ectoenzyme that catalyzes both the conversion of NAD+ to nicotinamide and cyclic ADP-ribose (cADPR), via an ADP-ribosyl cyclase reaction, and also the hydrolysis of cADPR to ADP-ribose (hydrolase). Major unresolved questions concern the correlation between receptor and catalytic properties of CD38, and also the apparent contradiction between ectocellular generation and intracellular Ca2+-mobilizing activity of cADPR. Results are presented that provide some explanations to this topological paradox in two different cell types. In cultured rat cerebellar granule neurons, extracellular cADPR (either generated by CD38 or directly added) elicited an enhanced intracellular Ca2+ response to KCl-induced depolarization, a process that can be qualified as a Ca2+-induced Ca2+ release (CICR) mechanism. On the other hand, in the CD38+ human Namalwa B lymphoid cells, NAD+ (and thiol compounds as well) induced a two-step process of self-aggregation followed by endocytosis of CD38, which resulted in a shift of cADPR metabolism from the cell surface to the cytosol. Both distinctive types of cellular responses to extracellular NAD+ seem to be suitable to elicit changes in the intracellular Ca2+ homeostasis.  相似文献   

14.
Intracellular Ca2+ mobilization plays an important role in a wide variety of cellular processes, and multiple second messengers are responsible for mediating intracellular Ca2+ changes. Here we explored the role of one endogenous Ca2+-mobilizing nucleotide, cyclic adenosine diphosphoribose (cADPR), in the proliferation and differentiation of neurosecretory PC12 cells. We found that cADPR induced Ca2+ release in PC12 cells and that CD38 is the main ADP-ribosyl cyclase responsible for the acetylcholine (ACh)-induced cADPR production in PC12 cells. In addition, the CD38/cADPR signaling pathway is shown to be required for the ACh-induced Ca2+ increase and cell proliferation. Inhibition of the pathway, on the other hand, accelerated nerve growth factor (NGF)-induced neuronal differentiation in PC12 cells. Conversely, overexpression of CD38 increased cell proliferation but delayed NGF-induced differentiation. Our data indicate that cADPR plays a dichotomic role in regulating proliferation and neuronal differentiation of PC12 cells.Mobilization of intracellular Ca2+ stores is involved in diverse cell functions, including fertilization, cell proliferation, and differentiation (14). At least three endogenous Ca2+-mobilizing messengers have been identified, including inositol trisphosphate (IP3),3 nicotinic adenine acid dinucleotide phosphate (NAADP), and cyclic adenosine diphosphoribose (cADPR). Similar to IP3, cADPR can mobilize calcium release in a wide variety of cell types and species, from protozoa to animals. The cADPR-mediated Ca2+ signaling has been indicated in a variety of cellular processes (57), from abscisic acid signaling and regulation of the circadian clock in plants, to mediating long-term synaptic depression in hippocampus.Ample evidence shows that the ryanodine receptors are the main intracellular targets for cADPR (1, 2, 8). Ryanodine receptors (RyRs) are intracellular Ca2+ channels widely expressed in various cells and tissues, including muscles and neurons. It is the major cellular mediator of Ca2+-induced Ca2+ release (CICR) in cells. There are three isoforms of ryanodine receptors: RyR1, RyR2, and RyR3, all of which have been implicated in the cADPR signaling (1, 2, 8). However, evidence regarding cADPR acting directly on the receptors is lacking (9). It has been suggested that accessory proteins, such as calmodulin and FK506-binding protein (FKBP), may be involved instead (1015).cADPR is formed from nicotinamide adenine dinucleotide (NAD) by ADP-ribosyl cyclases. Six ADP-ribosyl cyclases have been identified so far: Aplysia ADP-ribosyl cyclase, three sea urchin homologues (16, 17), and two mammalian homologues, CD38 and CD157 (18). CD38 is a membrane-bound protein and the main mammalian ADP-ribosyl cyclase. As a novel multifunctional enzyme, CD38 catalyzes the synthesis and hydrolysis of both cADPR and NAADP, two structurally and functionally distinct Ca2+ messengers. Virtually all mammalian tissues ever examined have been shown to express CD38. CD38 knock-out mice exhibit multiple physiological defects, ranging from impaired immune responses, metabolic disturbances, to behavioral modifications (1, 6, 18).CD38 was originally identified as a lymphocyte differentiation antigen (18). Indeed, CD38/cADPR has been linked to cell differentiation (5). For example, in human HL-60 cells, CD38 expression and the consequential accumulation of cADPR play a causal role in mediating granulocytic differentiation (19). In addition, expression of CD38 in HeLa and 3T3 cells not only increased intracellular Ca2+ concentration but also induced cell proliferation by significantly reducing the S phase duration, leading to shortened cell doubling time (20). The ability of cADPR to increase cell proliferation has also been observed in human T cells (21), human hemopoietic progenitors (22), human peripheral blood mononuclear cells (23), human mesenchymal stem cells (24), and murine mesangial cells (25).The PC12 cell line was derived from rat adrenal medulla and has been used extensively as a neuronal model, since it exhibits many of the functions observed in primary neuronal cultures (26). Most importantly, PC12 cells can be induced by nerve growth factor (NGF) to differentiate into cells with extensive neurite outgrowths, resembling neuronal dendritic trees (26, 27). In contrast to NGF, numerous growth factors and neurotransmitters can induce the proliferation of PC12 cells instead (26). Both IP3 receptor- and ryanodine receptor-mediated Ca2+ stores have been shown to be present in PC12 cells (2831). The type 2 ryanodine receptor is expressed in PC12 cells and activation of the NO/cGMP pathway in PC12 cells results in calcium mobilization, which is mediated by cADPR and similar to that seen in sea urchin eggs (32). It has been demonstrated that NAADP, another Ca2+-mobilizing messenger, is also a potent neuronal differentiation inducer in PC12 cells, while IP3 exhibits no such role (33, 34). Whether cADPR is involved in the proliferation and differentiation of PC12 cells is unknown.Here we show that activation of the CD38/cADPR/Ca2+ signaling is required for the ACh-induced proliferation in PC12 cells, while inhibition of the pathway accelerates NGF-induced neuronal differentiation. Our data indicate that cADPR is important in regulating cell proliferation and neuronal differentiation in PC12 cells.  相似文献   

15.
Aberrant Ca2+ signals within pancreatic acinar cells are an early and critical feature in acute pancreatitis, yet it is unclear how these signals are generated. An important mediator of the aberrant Ca2+ signals due to bile acid exposure is the intracellular Ca2+ channel ryanodine receptor. One putative activator of the ryanodine receptor is the nucleotide second messenger cyclic ADP-ribose (cADPR), which is generated by an ectoenzyme ADP-ribosyl cyclase, CD38. In this study, we examined the role of CD38 and cADPR in acinar cell Ca2+ signals and acinar injury due to bile acids using pharmacologic inhibitors of CD38 and cADPR as well as mice deficient in Cd38 (Cd38−/−). Cytosolic Ca2+ signals were imaged using live time-lapse confocal microscopy in freshly isolated mouse acinar cells during perifusion with the bile acid taurolithocholic acid 3-sulfate (TLCS; 500 μm). To focus on intracellular Ca2+ release and to specifically exclude Ca2+ influx, cells were perifused in Ca2+-free medium. Cell injury was assessed by lactate dehydrogenase leakage and propidium iodide uptake. Pretreatment with either nicotinamide (20 mm) or the cADPR antagonist 8-Br-cADPR (30 μm) abrogated TLCS-induced Ca2+ signals and cell injury. TLCS-induced Ca2+ release and cell injury were reduced by 30 and 95%, respectively, in Cd38-deficient acinar cells compared with wild-type cells (p < 0.05). Cd38-deficient mice were protected against a model of bile acid infusion pancreatitis. In summary, these data indicate that CD38-cADPR mediates bile acid-induced pancreatitis and acinar cell injury through aberrant intracellular Ca2+ signaling.  相似文献   

16.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+-mobilizing intracellular messenger and is linked to a variety of stimuli and cell surface receptors. However, the enzyme responsible for endogenous NAADP synthesis in vivo is unknown, and it has been proposed that another enzyme differing from ADP-ribosyl cyclase family members may exist. The ecto-enzyme CD38, involved in many functions as diverse as cell proliferation and social behavior, represents an important alternative. In pancreatic acinar cells, the hormone cholecystokinin (CCK) stimulates NAADP production evoking Ca2+ signals by discharging acidic Ca2+ stores and leading to digestive enzyme secretion. From cells derived from CD38−/− mice, we provide the first physiological evidence that CD38 is required for endogenous NAADP generation in response to CCK stimulation. Furthermore, CD38 expression in CD38-deficient pancreatic AR42J cells remodels Ca2+-signaling pathways in these cells by restoring Ca2+ mobilization from lysosomes during CCK-induced Ca2+ signaling. In agreement with an intracellular site for messenger synthesis, we found that CD38 is expressed in endosomes. These CD38-containing vesicles, likely of endosomal origin, appear to be proximal to lysosomes but not co-localized with them. We propose that CD38 is an NAADP synthase required for coupling receptor activation to NAADP-mediated Ca2+ release from lysosomal stores in pancreatic acinar cells.  相似文献   

17.
Ca2+ signaling plays a fundamental role in cardiac hypertrophic remodeling, but the underlying mechanisms remain poorly understood. We investigated the role of Ca2+-mobilizing second messengers, NAADP and cADPR, in the cardiac hypertrophy induced by β-adrenergic stimulation by isoproterenol. Isoproterenol induced an initial Ca2+ transients followed by sustained Ca2+ rises. Inhibition of the cADPR pathway with 8-Br-cADPR abolished only the sustained Ca2+ increase, whereas inhibition of the NAADP pathway with bafilomycin-A1 abolished both rapid and sustained phases of the isoproterenol-mediated signal, indicating that the Ca2+ signal is mediated by a sequential action of NAADP and cADPR. The sequential production of NAADP and cADPR was confirmed biochemically. The isoproterenol-mediated Ca2+ increase and cADPR production, but not NAADP production, were markedly reduced in cardiomyocytes obtained from CD38 knockout mice. CD38 knockout mice were rescued from chronic isoproterenol infusion-induced myocardial hypertrophy, interstitial fibrosis, and decrease in fractional shortening and ejection fraction. Thus, our findings indicate that β-adrenergic stimulation contributes to the development of maladaptive cardiac hypertrophy via Ca2+ signaling mediated by NAADP-synthesizing enzyme and CD38 that produce NAADP and cADPR, respectively.  相似文献   

18.
CD38 is a type II glycoprotein that is responsible for the synthesis and hydrolysis of cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), Ca2+-mobilizing second messengers. The activation of hepatic stellate cells (HSCs) is a critical event in hepatic fibrosis because these cells are the main producers of extracellular matrix proteins in the liver. Recent evidence indicates that the renin-angiotensin system plays a major role in liver fibrosis. In this study, we showed that angiotensin II (Ang II) evoked long lasting Ca2+ rises and induced NAADP or cADPR productions via CD38 in HSCs. Inositol 1,4,5-trisphosphate as well as NAADP-induced initial Ca2+ transients were prerequisite for the production of cADPR, which was responsible for later sustained Ca2+ rises in the Ang II-treated HSCs. Ang II-mediated inositol 1,4,5-trisphosphate- and NAADP-stimulated Ca2+ signals cross-talked in a dependent manner with each other. We also demonstrated that CD38 plays an important role in Ang II-induced proliferation and overproduction of extracellular matrix proteins in HSCs, which were reduced by an antagonistic cADPR analog, 8-bromo-cADPR, or in CD38−/− HSCs. Moreover, we presented evidence to implicate CD38 in the bile duct ligation-induced liver fibrogenesis; infiltration of inflammatory cells and expressions of α-smooth muscle actin, transforming growth factor-β1, collagen αI(1), and fibronectin were reduced in CD38−/− mice compared with those in CD38+/+ mice. These results demonstrate that CD38-mediated Ca2+ signals contribute to liver fibrosis via HSCs activation, suggesting that intervention of CD38 activation may help prevent hepatic fibrosis.  相似文献   

19.
Cyclic adenosine diphosphate ribose (cADPR) is a potent endogenous calcium-mobilizing agent synthesized from NAD+ by ADP-ribosyl cyclases described for several animal cells. Pharmacological studies suggest that cADPR is an endogenous modulator of Ca2+-induced Ca2+ release channels. There is also information about the sub-micromolar concentration of cADPR in plant cells. Whether cADPR can act as a Ca2+-mobilizing intracellular messenger in plant tissue is an unresolved question. Despite the obvious importance of monitoring cADPR cellular levels under various physiological conditions in plants, its measurement has been technically difficult and requires specialized reagents. In the present study a widely applicable sensitivity assay for cADPR is described. We show that Pharbitis nil tissue from cotyledons contains a certain cADPR level. To explain the possible roles of this second messenger in photoperiodic flower induction, some physiological experiments were also performed. The exogenous applications of cADPR to Pharbitis nil plants, which were exposed to a 12-h-long subinductive night, significantly increased flowering response. Nevertheless 8-Br-cADPR inhibited flowering when these compounds were applied during a 16-h-long inductive night. The effect of ruthenium red, a calcium channel blocker and ryanodine, a calcium channel stimulator, on the photoperiodic induction of flowering was also studied. Ruthenium red, when applied before and during an inductive 16-h dark period, slightly inhibited flowering, whereas ryanodine, when applied before and during a 12-h long subinductive night, stimulated flower bud formation. We also confirmed evidence that Ca2+ ions are involved in the photoperiodic induction of flowering. Thus, the obtained results may suggest the involvement of cyclic ADPR-activated Ca2+ mobilization in the photoperiodic flower induction process in Pharbitis nil.  相似文献   

20.
Ca2+ homeostasis controls a diversity of cellular processes including proliferation and apoptosis. A very important aspect of Ca2+ signaling is how different Ca2+ signals are translated into specific cell functions. In T cells, Ca2+ signals are induced following the recognition of antigen by the T cell receptor and depend mainly on Ca2+ influx through store-operated CRAC channels, which are mediated by ORAI proteins following their activation by STIM proteins. The complete absence of Ca2+ influx caused by mutations in Stim1 and Orai1 leads to severe immunodeficiency. Here we summarize how Ca2+ signals are tuned to regulate important T cell functions as proliferation, apoptosis and tolerance, the latter one being a special state of immune cells in which they can no longer respond properly to an otherwise activating stimulus. Perturbations of Ca2+ signaling may be linked to immune suppressive diseases and autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号