首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphorylation of regulatory light chain (LC20) by myosin light chain kinase (MLCK) has been thought to play an important role in both smooth muscle contraction and several functions of vertebrate non-muscle cells. Amiloride, a frequently used Na+/H+ exchange inhibitor, potently inhibited phosphorylation of LC20 by MLCK. The inhibition was non-competitive with respect to myosin but competitive with ATP (Ki = 0.95 microM), suggesting that amiloride may act as an ATP analogue. Amiloride also inhibited the tension development of ether-treated gizzard fibers which were lacking in Na+/H+ antiport, even in the presence of ATP regenerating system. Thus, it must be reminded that amiloride cannot be used as a specific inhibitor of Na+/H+ exchange, and that the inhibition of myosin phosphorylation by amiloride should be taken into consideration in studying the role of Na+/H+ antiport in the cellular function.  相似文献   

2.
Myosin light chain kinase (MLCK) is a key regulator of various forms of cellular mobility, in particular, endothelial and epithelial permeability. The membrane-penetrative peptide (H-RKKYKYRRK-NH2, L-PIK) is one of the potential MLCK inhibitors for use in humans. Five analogs of L-PIK were synthesized by the solid phase method of peptide synthesis using Fmoc technology. According to 1H NMR, these analogs exhibited increased stability towards degradation in blood plasma. One of the synthesized peptides, L-[MeArg1]PIK, inhibited MLCK activity in vitro, and the inhibition efficacy of L-[MeArg1]PIK was equal to that of L-PIK. The inhibitory effect of the other analogs was lower than that of L-PIK. The L-PIK analog that consisted of D-amino acids was the least active. Thus, we demonstrated the possibility of creating an effective peptide inhibitor of MLCK with increased stability against biodegradation. Such a peptide inhibitor is a promising compound for further pharmacological studies.  相似文献   

3.
Recently, one of the authors (K.I.) and other investigators reported that myosin light chain (MLC) of smooth muscle (gizzard, arterial and tracheal) was diphosphorylated by myosin light chain kinase (MLCK) and that diphosphorylated myosin showed a marked increase in the actin-activated myosin ATPase activity in vitro and ex vivo. In this study, we prepared myosin, actin, tropomyosin (human platelet), MLCK (chicken gizzard) and calmodulin (bovine brain) and demonstrated diphosphorylation of MLC of platelet by MLCK in vitro. Our results are as follows. (1) Platelet MLC was diphosphorylated by a relatively high concentration (greater than 20 micrograms/ml) of MLCK in vitro. As a result of diphosphorylation, the actin-activated myosin ATPase activity was increased 3 to 4-fold as compared to the monophosphorylation. (2) Both di- and monophosphorylation reactions showed similar Ca2+, KCl, MgCl2-dependence. Maximal reaction was seen at [Ca2+] greater than 10(-6) M, 60 mM KCl and 2 mM MgCl2. This condition was physiological in activated platelets. (3) Di- and monophosphorylated myosin showed similar Ca2+, KCl-dependence of ATPase activity but distinct MgCl2-dependence. Diphosphorylated myosin showed maximal ATPase activity at 2 mM MgCl2 and monophosphorylated myosin showed a maximum at 10 mM MgCl2. (4) The addition of tropomyosin stimulated actin-activated ATPase activity in both di- and monophosphorylated myosin to the same degree. (5) ML-9, a relatively specific inhibitor of MLCK, inhibited the aggregation of human platelets induced by thrombin ex vivo in a dose-dependent manner. Moreover, this drug also partially inhibited both di- and monophosphorylation reactions and actin-activated ATPase activity. On the other hand, H-7, a synthetic inhibitor of protein kinase C, had little effect on the aggregation of human platelets induced by thrombin ex vivo. From these results, we conclude that diphosphorylation of platelet myosin by MLCK may play an important role in activated platelets in vivo.  相似文献   

4.
Activation of myosin light chain kinase is a prerequisite for smooth muscle activation. In this study, short peptide analogs of the phosphorylation site of the myosin light chain were studied for their effects on several contractile protein systems. The peptides inhibited phosphorylation of isolated ventricular and smooth muscle myosin light chains by smooth muscle myosin light chain kinase, but they were only weak inhibitors of phosphorylation of intact myosin and actomyosin. The peptides were also unable to block force development or myosin light chain phosphorylation in glycerol permeabilized fibers of swine carotid media. Apparently, the association of the myosin light chain with myosin changes its conformation such that substrate analogs which are potent inhibitors of the phosphorylation of isolated myosin light chains by myosin light chain kinase are ineffective at blocking phosphorylation of the intact molecule.  相似文献   

5.
Inhibitors of myosin light chain kinase, 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-9) and 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7), induced Nitroblue tetrazolium reducing activity, lysozyme activity and morphological maturation of human monoblastic U937, THP-1 and promyelocytic HL-60 cells, but not of erythroblastic K562 cells. However, three analogs of ML-9, which are an inhibitor and an activator of protein kinase C, and a calmodulin antagonist, respectively, did not induce differentiation of the cells.  相似文献   

6.
This study evaluated the effect of inhibitors of transmethylation on histamine release from rat mast cells and rat basophilic leukemia cells. IgE-mediated histamine release from rat basophilic leukemia cells (RBL-2H3 cells) was inhibited by 3-deazaadenosine (DZA) in the presence of L-homocysteine thiolactone (Hcy) or the combination of adenosine, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), and Hcy in a dose-dependent fashion. There were no significant changes in the cellular cAMP levels by these inhibitors. Histamine release induced by anti-IgE or dextran from normal rat mast cells was also blocked by DZA plus Hcy in a dose-dependent manner. DZA at 10(-3) M in the presence of 10(-4) M Hcy or the combination of 10(-3) M adenosine, 10(-4) M EHNA, and 10(-3) M Hcy inhibited lipid (perhaps phospholipid) methylation into RBL-2H3 cells without affecting choline incorporation. In the presence of 10(-3) M DZA plus 10(-4) M Hcy there was a 170-fold increase in [35S]AdoHcy with the concomitant appearance of 3-deaza-AdoHcy when the cells were incubated with [35S]methionine, thus indicating that these drugs inhibited methylation reaction(s) through the intracellular accumulation of AdoHcy and 3-deaza-AdoHcy. In contrast, histamine release from rat mast cells induced by the calcium ionophore A23187, compound 48/80, polymyxin B, or ATP was not inhibited by these compounds. These results suggest that IgE- or dextran-mediated histamine release involves methylation reactions(s), whereas the other secretagogues bypass this early step.  相似文献   

7.
Novel peptides originating from the peptide inhibitor of myosin light chain kinase (MLCK), L-PIK (Arg-Lys-Lys-Tyr-Lys-Tyr-Arg-Arg-Lys), have been studied for their ability to attenuate the thrombin-induced hyperpermeability of an endothelial cell monolayer in culture. Peptides [NαMeArg1]-Lys-Lys-Tyr-Lys-Tyr-Arg-(D)Arg8-Lys and H-Arg(NO2)Lys-Lys-Tyr-Lys-Tyr-Arg-Arg-Lys-NH2 (designated PIK2 and PIK4, respectively) appeared to be the most effective inhibitors of endothelial cell monolayer hyperpermeability, and surpassed other known peptide inhibitors of MLCK derived from original L-PIK. Our results validate PIK2 and PIK4 as the leading molecules for the development of novel drugs intended to counteract pathological hyperpermeability of vascular endothelium.  相似文献   

8.
Avian myosin light chain kinase (MLCK) is inhibited by a range of plant-derived flavonoids. Maximal inhibition requires 2,3-unsaturation and polyhydroxylation of two of the three flavonoid rings. Phosphorylation of a synthetic myosin light chain-related peptide by wheat embryo Ca(2+)-dependent protein kinase (CDPK) is also inhibited by a range of flavonoids but phosphorylation of histone preparation III-S by wheat CDPK is not inhibited by flavonoids. The structural requirements for inhibition of wheat CDPK by flavonoids are more stringent than for inhibition of avian MLCK. Potent flavonoid inhibitors of wheat CDPK are unsaturated in 2,3 position, have hydroxyl groups in positions 3' and 4' and an additional hydroxyl in the chromone ring. Flavonoid glycosylation or methylation can abolish inhibition. A number of other naturally occurring plant phenolics including chalcones and gossypol also inhibit avian MLCK and wheat CDPK. Gossypol binds to calmodulin, abolishing Ca(2+)-dependent enhancement of dansyl-calmodulin fluorescence.  相似文献   

9.
Increased mortality after stroke is associated with development of brain edema. The aim of the present study was to examine the contribution of endothelial myosin light chain (MLC) phosphorylation to hypoxia-induced blood-brain barrier (BBB) opening. Measurements of trans-endothelial electrical resistance (TEER) were performed to analyse BBB integrity in an in vitro co-culture model (bovine brain microvascular endothelial cells (BEC) and rat astrocytes). Brain fluid content was analysed in rats after stroke induction using a two-vein occlusion model. Dihydroethidium was used to monitor intracellular generation of reactive oxygen species (ROS) in BEC. MLC phosphorylation was detected using immunohistochemistry and immunoblot analysis. Hypoxia caused a decrease of TEER values by more than 40%, which was prevented by inhibition of the MLC-kinase (ML-7, 10 micromol/L). In addition, ML-7 significantly reduced the brain fluid content in vivo after stroke. The NAD(P)H-oxidase inhibitor apocynin (500 micromol/L) prevented the hypoxia-induced TEER decrease. Hypoxia-dependent ROS generation was completely abolished by apocynin. Furthermore, ML-7 and apocynin blocked hypoxia-dependent phosphorylation of MLC. Our data demonstrate that hypoxia causes a breakdown of the BBB in vitro and in vivo involving ROS and the contractile machinery.  相似文献   

10.
Kaempferol, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, was found to inhibit bovine aorta myosin light chain kinase with a Ki of 0.3-0.5 microM. It was found to be competitive with ATP and non-competitive with isolated myosin light chains. The specificity of this inhibitor was studied relative to protein kinase C and cAMP dependent protein kinase (IC50 = 15 microM and 150 microM, respectively). It appears not to interact strongly with calmodulin binding proteins, such as Ca2+-calmodulin dependent phosphodiesterase (IC50 = 45 microM), and had little effect on actin-activated myosin subfragment-1 ATPase activity (IC50 greater than 100 microM) or smooth muscle phosphatase activities (IC50 greater than 100 microM).  相似文献   

11.
As a regulator of smooth muscle contractility, zipper-interacting protein kinase (ZIPK) appears to phosphorylate the regulatory myosin light chain (RLC20), directly or indirectly, at Ser19 and Thr18 in a Ca2+-independent manner. The calmodulin-binding and autoinhibitory domain of myosin light chain kinase (MLCK) shares similarity to a sequence found in ZIPK. This similarity in sequence prompted an investigation of the SM1 peptide, which is derived from the autoinhibitory region of MLCK, as a potential inhibitor of ZIPK. In vitro studies showed that SM1 is a competitive inhibitor of a constitutively active 32-kDa form of ZIPK with an apparent Ki value of 3.4 µM. Experiments confirmed that the SM1 peptide is also active against full-length ZIPK. In addition, ZIPK autophosphorylation was reduced by SM1. ZIPK activity is independent of calmodulin; however, calmodulin suppressed the in vitro inhibitory potential of SM1, likely as a result of nonspecific binding of the peptide to calmodulin. Treatment of ileal smooth muscle with exogenous ZIPK was accompanied by an increase in RLC20 diphosphorylation, distinguishing between ZIPK [and integrin-linked kinase (ILK)] and MLCK actions. Administration of SM1 suppressed steady-state muscle tension developed by the addition of exogenous ZIPK to Triton-skinned rat ileal muscle strips with or without calmodulin depletion by trifluoperazine. The decrease in contractile force was associated with decreases in both RLC20 mono- and diphosphorylation. In summary, we present the SM1 peptide as a novel inhibitor of ZIPK. We also conclude that the SM1 peptide, which has no effect on ILK, can be used to distinguish between ZIPK and ILK effects in smooth muscle tissues. inhibitory peptide; calcium sensitization  相似文献   

12.
Selective binding of L-thyroxine by myosin light chain kinase   总被引:3,自引:0,他引:3  
L-Thyroxine selectively inhibited Ca2+-calmodulin-activated myosin light chain kinases (MLC kinase) purified from rabbit skeletal muscle, chicken gizzard smooth muscle, bovine thyroid gland, and human platelet with similar Ki values (Ki = 2.5 microM). A detailed analysis of L-thyroxine inhibition of smooth muscle myosin light chain kinase activation was undertaken in order to determine the effect of L-thyroxine on the stoichiometries of Ca2+, calmodulin, and the enzyme in the activation process. The kinetic data indicated that L-thyroxine does not interact with calmodulin but, instead, through direct association with the enzyme, inhibits the binding of the Ca2+-calmodulin complex to MLC kinase. L-[125I]Thyroxine gel overlay revealed that the 95-kDa fragment of chicken gizzard MLC kinase digested by chymotrypsin and all the fragments of 110, 94, 70, and 43 kDa produced by Staphylococcus aureus V8 protease digestion which contain the calmodulin binding domain retain L-[125I]thyroxine binding activity, whereas smaller peptides were not radioactive. Since MLC kinase is phosphorylated by cAMP-dependent protein kinase (2 mol of phosphate/mol of MLC kinase), the effect of L-thyroxine on the phosphorylation of MLC kinase also was examined. L-Thyroxine binding did not inhibit the phosphorylation of MLC kinase and, moreover, reversed the inhibition of phosphorylation obtained with the calmodulin-enzyme complex. These observations support the suggestion that L-thyroxine binds at or near the calmodulin-binding site of MLC kinase. L-Thyroxine may serve as a different type of pharmacological tool for elucidating the biological significance of MLC kinase-mediated reactions.  相似文献   

13.
14.
Ca2+/calmodulin-dependent myosin light chain kinase phosphorylates the regulatory light chain of myosin. Rabbit skeletal muscle myosin light chain kinase also catalyzes a Ca2+/calmodulin-dependent autophosphorylation with a rapid rate of incorporation of 1 mol of 32P/mol of kinase and a slower rate of incorporation up to 1.52 mol of 32P/mol. Autophosphorylation was inhibited by a peptide substrate that has a low Km value for myosin light chain kinase. Autophosphorylation at both rates was concentration-independent, indicating an intramolecular mechanism. There were no significant changes in catalytic properties toward light chain and MgATP substrates or in calmodulin activation properties upon autophosphorylation. After digestion with V8 protease, phosphopeptides were purified and sequenced. Two phosphorylation sites were identified, Ser 160 and Ser 234, with the former associated with the rapid rate of phosphorylation. Both sites are located amino terminal of the catalytic domain. These results indicate that the extended "tail" region of the enzyme can fold into the active site of the kinase.  相似文献   

15.
To elucidate the possible involvement of myosin light chain kinase (MLCK) in the mechanism of exocytosis, we studied effects of MLCK inhibitor, wortmannin, on the secretory function of bovine adrenal chromaffin cells. Preincubation of chromaffin cells with wortmannin inhibited both acetylcholine- and high K(+)-evoked catecholamine (CA) release. The IC50 for high K(+)-evoked CA release was 1 microM. When the cells were permeabilized with digitonin after wortmannin preincubation, Ca(2+)-dependent exocytosis was inhibited in a dose-dependent manner (IC50, 1 microM). These findings suggest the implication of MLCK in the Ca(2+)-triggered process in the machinery of exocytosis.  相似文献   

16.
Myosin light chain kinase binds to actin-containing filaments from cells with a greater affinity than to F-actin. However, it is not known if this binding in cells is regulated by Ca2+/calmodulin as it is with F-actin. Therefore, the binding properties of the kinase to stress fibers were examined in smooth muscle-derived A7r5 cells. Full-length myosin light chain kinase or a truncation mutant lacking residues 2-142 was expressed as chimeras containing green fluorescent protein at the C terminus. In intact cells, the full-length kinase bound to stress fibers, whereas the truncated kinase showed diffuse fluorescence in the cytoplasm. After permeabilization with saponin, the fluorescence from the truncated kinase disappeared, whereas the fluorescence of the full-length kinase was retained on stress fibers. Measurements of fluorescence intensities and fluorescence recovery after photobleaching of the full-length myosin light chain kinase in saponin-permeable cells showed that Ca2+/calmodulin did not dissociate the kinase from these filaments. However, the filament-bound kinase was sufficient for Ca2+-dependent phosphorylation of myosin regulatory light chain and contraction of stress fibers. Thus, dissociation of myosin light chain kinase from actin-containing thin filaments is not necessary for phosphorylation of myosin light chain in thick filaments. We note that the distance between the N terminus and the catalytic core of the kinase is sufficient to span the distance between thin and thick filaments.  相似文献   

17.
Dictyostelium myosin light chain kinase. Purification and characterization   总被引:9,自引:0,他引:9  
A Dictyostelium myosin light chain kinase has been purified approximately 15,000-fold to near homogeneity. The purified kinase is a single polypeptide of approximately 34 kDa that phosphorylates only the 18-kDa Dictyostelium myosin regulatory light chain and itself among substrates tested. The enzyme was purified largely by ammonium sulfate fractionation and hydrophobic (butyl) interaction chromatography. Analysis using polyclonal antibodies raised against the purified 34-kDa protein confirms that this protein is responsible for myosin light chain kinase activity. Protein microsequence of the 34-kDa protein reveals conserved protein kinase sequences. The purified Dictyostelium myosin light chain kinase exhibits a Km for Dictyostelium myosin of 4 microM and a Vmax of 8 nmol/min/mg. Unlike other characterized myosin light chain kinases, this enzyme is not regulated by calcium/calmodulin. Western blot analysis demonstrates that the purified kinase is not a proteolytic fragment that has lost calcium/calmodulin regulation. The Dictyostelium myosin light chain kinase activity is not directly regulated by cyclic nucleotides. However, this kinase undergoes an intramolecular autophosphorylation that activates the enzyme.  相似文献   

18.
Mitosis-specific phosphorylation of myosin light chain kinase   总被引:4,自引:0,他引:4  
Cell cytosol preparations from mitotic HeLa cells exhibit a kinase activity that phosphorylates myosin light chain kinase (MLCK). This MLCK kinase activity is apparently distinct from the known MLCK kinases, including cAMP-dependent protein kinase, cGMP-dependent protein kinase, Ca(2+)-activated phospholipid-dependent protein kinase, or Ca(2+)-calmodulin-dependent protein kinase II, based on the following criteria. First, the MLCK kinase activity of mitotic cells does not respond to a variety of characteristic activators or inhibitors of these known kinases. Second, one- and two-dimensional peptide maps have revealed that the site of phosphorylation by the MLCK kinase of mitotic cells differs from those by these known kinases. The mitotic MLCK kinase phosphorylates MLCK at a threonine residue at a ratio of up to 1 mol of phosphate/mol of chicken gizzard MLCK. The MLCK kinase is mitosis-specific because mitotic cell extracts show much higher phosphorylation activity than nonmitotic cell extracts.  相似文献   

19.
Myosin light chain kinase (MLCK) is a key regulator of various forms of cell motility including smooth muscle contraction, cell migration, cytokinesis, receptor capping, secretion, etc. Inhibition of MLCK activity in endothelial and epithelial monolayers using cell‐permeant peptide Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐Arg‐Lys (PIK, P eptide I nhibitor of K inase) allows protecting the barrier capacity, suggesting a potential medical use of PIK. However, low stability of L ‐PIK in a biological milieu prompts for development of more stable L ‐PIK analogues for use as experimental tools in basic and drug‐oriented biomedical research. Previously, we designed PIK1, H‐(NαMe)Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐Arg‐Lys‐NH2, that was 2.5‐fold more resistant to peptidases in human plasma in vitro than L ‐PIK and equal to it as MLCK inhibitor. In order to further enhance proteolytic stability of PIK inhibitor, we designed the set of six site‐protected peptides based on L ‐PIK and PIK1 degradation patterns in human plasma as revealed by 1H‐NMR analysis. Implemented modifications increased half‐live of the PIK‐related peptides in plasma about 10‐fold, and these compounds retained 25–100% of L ‐PIK inhibitory activity toward MLCK in vitro. Based on stability and functional activity ranking, PIK2, H‐(NαMe)Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐D ‐Arg‐Lys‐NH2, was identified as the most stable and effective L ‐PIK analogue. PIK2 was able to decrease myosin light chain phosphorylation in endothelial cells stimulated with thrombin, and this effect correlated with the inhibition by PIK2 of thrombin‐induced endothelial hyperpermeability in vitro. Therefore, PIK2 could be used as novel alternative to other cell‐permeant inhibitors of MLCK in cell culture‐based and in vivo studies where MLCK catalytic activity inhibition is required. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Protease activated kinase I from rabbit reticulocytes has been shown to phosphorylate the P-light chain of myosin light chains isolated from rabbit skeletal muscle. The enzyme is not activated by Ca2+ and calmodulin or phospholipids. Protease activated kinase I is not inhibited by trifluoperazine at concentrations up to 200 μM or by the antibody to the Ca2+, calmodulin-dependent myosin light chain kinase from rabbit skeletal muscle. Two-dimensional peptide mapping of chymotryptic digests of myosin P-light chain show the site phosphorylated by the protease activated kinase is different from that phosphorylated by the Ca2+, calmodulin-dependent myosin light chain kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号