首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of an A/T-rich positive regulatory region (P268, -444 to -177 from the translation start site) of the pea plastocyanin gene (PetE) promoter has been investigated in transgenic plants containing chimeric promoters fused to the -glucuronidase (GUS) reporter gene. This region enhanced GUS expression in leaves of transgenic tobacco plants when fused in either orientation to a minimal pea PetE promoter (-176 to +4) and in roots when fused in either orientation upstream or downstream of a minimal cauliflower mosaic virus 35S promoter (-90 to +5). The region was also able to enhance GUS expression in microtubers of transgenic potato plants when placed in either orientation upstream of a minimal class I patatin promoter (-332 to +14). Dissection of P268 revealed that cis elements responsible for enhancing GUS expression from the minimal PetE promoter were distributed throughout P268. Multiple copies of a 31 bp A/T-rich sequence from within P268 and of a 26 bp random A/T sequence were able to enhance GUS expression from the minimal PetE promoter, indicating that A/T-rich sequences are able to act as quantitative, non-tissue-specific enhancer elements in higher plants. Abbreviations: CaMV, cauliflower mosaic virus; GUS, -glucuronidase; HMG, high-mobility group; MAR, matrix-associated region; MU, methylumbelliferone; SAR, scaffold-associated region.  相似文献   

3.
4.
We have previously reported the isolation and characterization of a gene (Zm 13) from Zea mays which shows a pollen-specific pattern of expression. Stably transformed tobacco plants containing a reporter gene linked to portions of the Zm 13 5 flanking region show correct temporal and spatial expression of the gene. Here we present a more detailed analysis of the 5 regions responsible for expression in pollen by utilizing a transient expression system. Constructs containing the -glucuronidase (GUS) gene under the control of various sized fragments of the Zm13 5 flanking region were introduced into Tradescantia and Zea mays pollen via high-velocity microprojectile bombardment, and monitored both visually and with a fluorescence assay. The results suggest that sequences necessary for expression in pollen are present in a region from –100 to –54, while other sequences which amplify that expression reside between –260 and –100. The replacement of the normal terminator with a portion of the Zm13 3 region containing the putative polyadenylation signal and site also increased GUS expression. While the –260 to –100 region contains sequences similar to other protein-binding domains reported for plants, the –100 to –54 region appears to contain no significant homology to other known promoter fragments which direct pollen-specific expression. The microprojectile bombardment of Tradescantia pollen appears to be a good test system for assaying maize and possibly other monocot promoter constructs for pollen expression.  相似文献   

5.
Summary The 5-upstream region of the class I patatin gene B33 directs strong expression of the -glucuronidase (GUS) reporter gene in potato tubers and in leaves treated with sucrose. Cis-acting elements affecting specificity and level of expression were identified by deletion analysis in transgenic potato plants. A putative tuber-specific element is located downstream from position –195. Nuclear proteins present in leaf and tuber extracts bind specifically to a conserved AT rich motif within this region. A DNA fragment between –183 and –143, including the binding site is, however, not able to enhance the expression of a truncated 35S promoter from cauliflower mosaic virus. Independent positive elements contributing to a 100-fold increase relative to the basic tuber-specific element are located between –228 and –195; –736 and –509, –930 and –736 and –1512 and –951. Sucrose inducibility is controlled by sequences downstream of position –228, indicating that the tuber-specific and sucrose-inducible elements are in close proximity.  相似文献   

6.
Nitrite reductase (NiR) is the second enzyme in the nitrate assimilatory pathway reducing nitrite to ammonium. The expression of the NiR gene is induced upon the addition of nitrate. In an earlier study, a 130 bp upstream region of the spinach NiR gene promoter, located between –330 to –200, was shown to be necessary for nitrate induction of -glucuronidase (GUS) expression in tissue-specific manner in transgenic tobacco plant [28]. To further delineate the cis-acting elements involved in nitrate regulation of NiR gene expression, transgenic tobacco plants were generated with 5 deletions in the–330 to –200 region of the spinach NiR gene promoter fused to the GUS gene. Plants with the NiR promoter deleted to –230 showed a considerable increase in GUS activity in the presence of nitrate, indicating that the 30 bp region between –230 to –200 is crucial for nitrate-regulated expression of NiR. In vivo DMS footprinting of the –300 to –130 region of the NiR promoter in leaf tissues from two independent transgenic lines revealed several nitrate-inducible footprints. Footprinting within the –230 to –181 region revealed factor binding to two adjacent GATA elements separated by 24 bp. This arrangement of GATA elements is analogous to cis-regulatory sequences found in the promoters of nitrate-inducible genes of Neurospora crassa, regulated by the NIT2 Zn-finger protein. The –240 to –110 fragment of the NiR promoter, which contains two NIT2 consensus core elements, bound in vitro to a fusion protein comprising the zinc finger domain of the N. crassa NIT2 protein. The data presented here show that nitrate-inducible expression of the NiR gene is mediated by nitrate-specific binding of trans-acting factors to sequences preserved between fungi and higher plants.  相似文献   

7.
A previous analysis with deletion mutants of the native -phaseolin gene demonstrated that removal of a negative element 5 upstream of–107 permitted phaseolin expression in stem cortex and secondary root (Burowet al., 1992). Here we employed the -glucuronidase (GUS) reporter gene to visualize, by histochemical staining, the cell type-specificity of phaseolin expression in stem and root, and to understand further the spatial control of the -phaseolin gene. The 782 bp 5 upstream promoter and its deletion mutants were fused to the GUS gene, and these chimaeric genes were used to transform tobacco. Histochemical staining for GUS activity demonstrated that phaseolin promoters truncated downstream of –227 conferred cell-type specific expression in internal/external phloem and protoxylem of mature stem. Surprisingly, GUS staining was prominent in both apical and lateral shoot apices of plants that contain the full-length –782 promoter and mutant promoters deleted up to –64. GUS expression was extended to all cell types of shoot tips, including epidermis, cortex, vasculature, procambium and pith. Expression in vasculature of petioles was limited to plants with promoters truncated to –106 and –64. The current results are in agreement with our previous findings with the native phaseolin gene: that the major positive element (–295/–228) is sufficient for seed-specific late-temporal expression of the phaseolin gene. We conclude that the 5 upstream sequence of the -phaseolin gene directs spatially- and temporally-controlled gene expression in developing seeds during the reproductive phase, but also confers expression in shoot apices during the vegetative phase of plant development.  相似文献   

8.
The 5-upstream region of the pea plastocyanin gene (petE) directed 5–10-fold higher levels of -glucuronidase (GUS) activity than the cauliflower mosaic virus 35S promoter in transgenic tobacco plants, although the levels of GUS mRNA were similar. The sequence (AAAAAUGG) around the translation initiation codon of petE enhanced translation of the GUS mRNA 10-fold compared to translation from the GUS translation initiation codon in transgenic tobacco plants and transfected protoplasts.  相似文献   

9.
10.
We have analysed the promoter regions of two closely related auxin-regulated glutathione S-transferase genes. All active deletion constructs tested showed expression of the reporter gene -glucuronidase (gusA) in root tips of young seedlings and newly developing lateral roots. Auxin treatment greatly enhanced the level of expression. The Nt103-1 promoter region –370/–276 was found to be necessary, at least as a quantitative element to confer auxin-responsiveness to a reporter gene, and sequences responsible for the auxin-responsiveness must be located downstream of –370. The region –651/–370 contains sequence information necessary for uninduced expression. The Nt103-35 promoter manifested its auxin-responsiveness within the –504/–310 region. Electrophoretic mobility shift analysis, using nuclear extracts from tobacco leaves and suspension cells, identified a factor binding to a sequence (ap103, TGAGTCT) at position –560 of the Nt103-1 promoter, which shows homology to the mammalian AP-1 site. A second factor was found to bind a sequence (as103, ATAGCTAAGTGCTTACG) with homology to the CaMV 35S promoter as-1 element. The as103 element is present in both promoters and positioned around –360, so within the region determined to be indispensable for the response to auxin. A third factor was found binding to the –276/–190 region of both promoters. Combined, these data point to the relevance of a 90 bp region for auxin-induced activity of both tobacco genes. The ASF-1 like factor binding to the as103 element within this region might be involved in mediating the auxin response.  相似文献   

11.
The promoter and upstream region of the Brassica napus 2S storage protein napA gene were studied to identify cis-acting sequences involved in developmental seed-specific expression. Fragments generated by successive deletions of the 5 control region of the napA gene were fused to the reporter gene -glucuronidase (GUS). These constructs were used to transform tobacco leaf discs. Analyses of GUS activities in mature seeds from the transformed plants indicated that there were both negatively and positively acting sequences in the napin gene promoter. Deletion of sequences between –1101 and –309 resulted in increased GUS activity. In contrast, deletion of sequences between –309 and –211 decreased the expression. The minimum sequence required for seed-specific expression was a 196 bp fragment between –152 and +44. Further 5 deletion of the fragment to –126 abolished this activity. Sequence comparison showed that a G box-like sequence and two sequence motifs conserved between 2S storage protein genes are located between –148 to –120. Histochemical and fluorometric analysis of tobacco seeds showed that the spatial and developmental expression pattern was retained in the deletion fragments down to –152. However, the expression in tobacco seeds differed from the spatial and temporal expression in B. napus. In tobacco, the napA promoter directed GUS activity early in the endosperm before any visible activity could be seen in the heart-shaped embryo. Later, during the transition from heart to torpedo stages, the main expression of GUS was localized to the embryo. No significant GUS activity was found in either root or leaf.  相似文献   

12.
Höfig KP  Moyle RL  Putterill J  Walter C 《Planta》2003,217(6):858-867
Four male cone-specific promoters were isolated from the genome of Pinus radiata D. Don, fused to the -glucuronidase (GUS) reporter gene and analysed in the heterologous host Arabidopsis thaliana (L.) Heynh. The temporal and spatial activities of the promoters PrCHS1, PrLTP2, PrMC2 and PrMALE1 during seven anther developmental stages are described in detail. The two promoters PrMC2 and PrMALE1 confer an identical GUS expression pattern on Arabidopsis anthers. DNA sequence analysis of the PrMC2 and PrMALE1 promoters revealed an 88% sequence identity over 276 bp and divergence further upstream (<40% sequence identity). GUS expression driven by a 276-bp PrMALE1 promoter fragment showed the same pattern in Arabidopsis anthers as observed for the full-length PrMALE1 promoter. Within the 276-bp promoter fragment a region of high homology to a previously described 16-bp anther-box was identified. In gain-of-function experiments the putative PrMALE1 anther-box was fused upstream of a 90-bp CaMV 35S minimal promoter, as a single copy in the sense direction and as an inverted repeat. No GUS expression was conferred to Arabidopsis anthers by either of these two constructs. In a loss-of-function experiment a 226-bp PrMALE1 deletion construct, which did not contain the putative PrMALE1 anther-box, still maintained the originally observed PrMALE1 GUS expression pattern. Hence, gain-of-function as well as loss-of-function experiments consistently showed that the putative anther-box of the PrMALE1 promoter is non-functional in the Arabidopsis genetic background. For the analysis of the four full-length pine promoters PrCHS1, PrLTP2, PrMC2 and PrMALE1, transformation vectors based on pCAMBIA2200 and pCAMBIA1302 were used. It will also be demonstrated in this article that sequences within the T-DNA borders of these vectors caused a characteristic histological background expression in Arabidopsis, with staining observed in vascular tissue of leaves, sepals, roots, filaments of stamens and in stems and pistils.Abbreviation GUS -glucuronidaseGenBank accession numbers for the analysed promoters: AF 337656 (PrCHS1), AF 337655 (PrLTP2), AF 337657 (PrMC2) and AF 337658 (PrMALE1).  相似文献   

13.
The maizerab17 gene is expressed in different plant parts in response to ABA and osmotic stress (J. Vilardellet al., Plant Mol Biol 14 (1990) 423–432). Here we demonstrate that 5 upstream sequences of therab17 gene confer the appropriate patterns of expression on the chloramphenicol acetyl transferase (CAT) reporter gene in transgenic tobacco plants, as well as in protoplasts derived from cultured rice cells. Specifically, a CAT construct containing a large 5 upstream fragment ofrab17 (–1330/+29) results in high levels of CAT activity in embryos, leaves and roots of transgenic plants subjected to water stress or ABA treatment. Transient expression assays in rice protoplasts transfected with CAT genes fused torab17 promoter deletions indicate that a 300 bp DNA fragment (–351/–102) is sufficient to confer ABA responsiveness upon the reporter gene. Furthermore, a 100 bp sequence (–219/–102) is capable of conferring ABA responsiveness upon a minimal promoter derived from the 35S CaMV promoter. Gel retardation experiments indicate that maize nuclear proteins bind to this fragment. This region of 100 bp contains a sequence (ACGTGGC) which has been identified as an abscisic acid response element in studies of other ABA-responsive plant genes.  相似文献   

14.
15.
We have evaluated the expression of the reporter -glucuronidase (GUS) gene driven by the cauliflower mosaic virus 35S (CaMV 35S) promoter in flowers and pollen from 14 independent transgenic strawberry lines. Of the 14 lines evaluated, 13 (92.8%) showed GUS activity—as estimated by the histochemical GUS assay—in some floral organs, with expression being most common in the flower stem, sepals, petals, ovary and stigma. Ten of these thirteen transgenic lines (77%) showed GUS activity in pollen, although the percentages of positive pollen per flower varied greatly among the different lines. A study of the GUS expression during pollen maturation showed that the (CaMV 35S) promoter showed low expression in pollen from flower buds before anthesis but was activated in mature pollen following anther dehiscence. The percentages of pollen grains that showed GUS activity ranged from 2.1% to 46.3%. These percentages were similar or even higher when mature pollen was stored dry at room temperature for 2 weeks. After 5 weeks of storage, the percentages of GUS-positive pollen decreased in two of the six lines analysed but remained at similar values in the other four lines. GUS activity was also measured in protein extracts of mature pollen by means of the fluorometric GUS assay, with the values obtained ranging from 3.8 mol MU mg protein–1 h–1 to 0.26 mol MU mg protein–1 h–1. Contrary to the generally held view that the CaMV 35S promoter is virtually silent in pollen, we conclude that it is highly expressed in transgenic strawberry pollen.Abbreviations CaMV 35S Cauliflower mosaic virus promoter - GUS -Glucuronidase (EC 3.2.1.31) - MU 4-Methyl umbelliferone - nos Nopaline synthase promoter - nptII Neomycin phosphotransferase - X-Gluc 5-Bromo-4-chloro-3-indolyl--d-glucuronic acid  相似文献   

16.
An optimised bombardment protocol to introduce DNA into Coffea arabica suspension culture cells was developed. Osmotic preconditioning of cells and physical bombardment parameters including Helium pressure, gap and target distances affecting DNA delivery were evaluated by monitoring transient expression of the uidA gene driven by the CaMV35S promoter. The highest transient GUS expression was obtained when cells were subjected to a 0.5 M mannitol–sorbitol pre-treatment 4 h prior to bombardment and a Helium pressure of 1550 psi, a 9-mm gap distance and 12 cm target distance as physical bombardment parameters. The optimised protocol was tested with two coffee promoters: -tubulin and arabicin, which presented similar activity to the CaMV35S promoter in suspension culture cells by fluorometric GUS assays. GUS expression was reduced in bombarded tissue culture leaves, and only the CaMV35S and arabicin promoters showed histochemical activity in coffee endosperms. This is the first report of optimization of particle bombardment on coffee suspension culture cells, equivalent CaMV35S activity for a coffee promoter and transient -glucoronidase expression in coffee endo-sperms.  相似文献   

17.
Functional analysis of a gibberellin-regulated wheat -amylase promoter, -Amy2/54, has indicated that three regions were essential for expression. By studying the ability of mutant promoters, containing a randomly inserted 22 bp excision linker, to direct expression in oat aleurone protoplasts we have refined the positions and extents of these three cis elements and also demonstrated the presence of two additional elements. By converting the linker insertions to either single base point mutations or deletions using the class IIS restriction endonuclease Bsm I we have shown that nucleotides –119 and –109 within the GARE –121GTAACAGAGTCTGG–108 and nucleotide –152 within the proposed element –156GATTGACTTGACC–144 are essential for high level expression from this promoter.  相似文献   

18.
Summary The majority of the activation potential of the Saccharomyces cerevisiae TDH3 gene promoter is contained within nucleotides –676 to –381 (relative to the translation initiation codon). An upstream activation sequence (UAS) in this region has been characterized by in vitro and in vivo assays and demonstrated to be composed of two small, adjacent DNA sequence elements. The essential determinant of this upstream UAS is a general regulatory factor 1 (GRF1) binding site at nucleotides –513 to –501. A synthetic DNA element comprising this sequence, or an analogue in which two of the degenerate nucleotides of the GRF1 site consensus sequence were altered, activated 5 deleted TDH3 and CYC1 promoters. The second DNA element of the UAS is a 7 by sequence which is conserved in the promoters of several yeast genes encoding glycolytic enzymes and occurs at positions –486 to –480 of the TDH3 promoter. This DNA sequence represents a novel promoter element: it contains no UAS activity itself, yet potentiates the activity of a GRF1 UAS. The potentiation of the GRFl UAS by this element occurs when placed upstream from the TATA box of either the TDH3 or CYC1 promoters. The characteristics of this element (termed GPE for GRF1 site potentiator element) indicate that it represents a binding site for a different yeast protein which increases the promoter activation mediated by the GRF1 protein. Site-specific deletion and promoter reconstruction experiments suggest that the entire activation potential of the –676 to –381 region of the TDH3 gene promoter may be accounted for by a combination of the GRF1 site and the GPE.  相似文献   

19.
A strong oxidative stress-inducible peroxidase (POD) promoter was cloned from sweetpotato (Ipomoea batatas) and characterized in transgenic tobacco plants and cultured cells in terms of environmental stress. A POD genomic clone (referred to as SWPA2) consisted of 1824 bp of sequence upstream of the translation start site, two introns (743 bp and 97 bp), and a 1073 bp coding region. SWPA2 had previously been found to encode an anionic POD which was highly expressed in response to oxidative stress. The SWPA2 promoter contained several cis-element sequences implicated in oxidative stress such as GCN-4, AP-1, HSTF, SP-1 reported in animal cells and a plant specific G-box. Employing a transient expression assay in tobacco protoplasts, with five different 5-deletion mutants of the SWPA2 promoter fused to the -glucuronidase (GUS) reporter gene, the 1314 bp mutant deletion mutant showed about 30 times higher GUS expression than the CaMV 35S promoter. The expression of GUS activity in transgenic tobacco plants under the control of the –1314 SWPA2 promoter was strongly induced in response to environmental stresses including hydrogen peroxide, wounding and UV treatment. Furthermore, GUS activity in suspension cultures of transgenic cells derived from transgenic tobacco leaves containing the –1314 bp SWPA2 promoter-GUS fusion was strongly expressed after 15 days of subculture compared to other deletion mutants. We anticipate that the –1314 bp SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号