首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cao S  Rossant C  Ng S  Buss AD  Butler MS 《Phytochemistry》2003,64(5):987-990
Three compounds, 2,3-dihydroxy-4-methoxy-6,6,9-trimethyl-6H-dibenzo[b,d]pyran (1), 8-methoxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-6-ol (2) and 4-methoxy-3-(3-methyl-2-butenyl)-benzoic acid (3), have been isolated from Wigandia urens. The structures of compounds 1, 2 and 3 were determined from spectroscopic data and showed activity in a CCR5 assay with IC(50) values of 33, 46 and 26 muM respectively.  相似文献   

2.
UPAR is a GPI anchored protein, which is found in both lipid rafts and in more fluid regions of the plasma membrane. We have studied the role of the ligand uPA on uPAR localization and on the composition of the lipid membrane microdomains. We have analyzed the glycosphingolipid environment of uPAR in detergent resistant membrane (DRM) fractions prepared by cell lysis with 1% Triton X-100 and fractionated by sucrose gradient centrifugation obtained from HEK293-uPAR cells. The uPAR specific lipid membrane microdomain has been separated from the total DRM fraction by immunoprecipitation with an anti-uPAR specific antibody under conditions that preserve membrane integrity. We have also tested uPA-induced ERK phosphorylation in the presence of methyl-β-cyclodextrin, which is known to disrupt lipid rafts by sequestering cholesterol from such domains. Our results show that uPAR is partially associated with DRM and this association is increased by ligands, is independent of the catalytic activity of uPA, and is required for intracellular signalling. In the absence of ligands, uPAR experiences a lipid environment very similar to that of total DRM, enriched in sphingomyelin and glycosphingolipids. However, after treatment of cells with uPA or ATF the lipid environment is strongly impoverished of neutral glycosphingolipids.  相似文献   

3.
U73122 which was originally identified as a phospholipase C inhibitor represents a potent direct inhibitor of purified 5-lipoxygenase (5-LO) with an IC50 value of 30 nM. 5-LO catalyzes the conversion of arachidonic acid (AA) into leukotrienes which represent mediators involved in inflammatory and allergic reactions and in host defense reactions against microorganisms. Since the efficient inhibition of the human 5-LO enzyme depended on the thiol reactivity of the maleinimide group of U73122, we used this property to identify cysteine residues in the 5-LO protein that are important for 5-LO inhibition by U73122. We found by MALDI-MS that U73122 covalently binds to cysteine residues 99, 159, 248, 264, 416 and 449. Mutation of Cys416 to serine strongly reduces inhibition of 5-LO by U73122 and the additional mutation of three cysteines close to Cys416 further impairs 5-LO inhibition by the compound. Wash out experiments with U73122 and 5-LO indicated an irreversible binding of U73122. Together, our data suggest that the area around Cys416 which is close to the proposed AA entry channel to the active site is an interesting target for the development of new 5-LO inhibitors.  相似文献   

4.
Wilson disease is a genetic disorder characterized by the accumulation of copper in the body by defective biliary copper excretion. Wilson disease gene product (ATP7B) functions in copper incorporation to ceruloplasmin (Cp) and biliary copper excretion. However, copper metabolism in hepatocytes has been still unclear. Niemann-Pick disease type C (NPC) is a lipid storage disorder and the most commonly mutated gene is NPC1 and its gene product NPC1 is a late endosome protein and regulates intracellular vesicle traffic. In the present study, we induced NPC phenotype and examined the localization of ATP7B and secretion of holo-Cp, a copper-binding mature form of Cp. The vesicle traffic was modulated using U18666A, which induces NPC phenotype, and knock down of NPC1 by RNA interference. ATP7B colocalized with the late endosome markers, but not with the trans-Golgi network markers. U18666A and NPC1 knock down decreased holo-Cp secretion to culture medium, but did not affect the secretion of other secretory proteins. Copper accumulated in the cells after the treatment with U18666A. These findings suggest that ATP7B localizes in the late endosomes and that copper in the late endosomes is transported to the secretory compartment via NPC1-dependent pathway and incorporated into apo-Cp to form holo-Cp.  相似文献   

5.
Odorant-binding proteins (OBPs) are small abundant soluble proteins belonging to the lipocalin superfamily, which are thought to carry hydrophobic odorants through aqueous mucus towards olfactory receptors. Human variant hOBP-2A has been demonstrated to bind numerous odorants of different chemical classes with a higher affinity for aldehydes and fatty acids. Three lysyl residues of the binding pocket (Lys62, Lys82 and Lys112) have been suggested as candidates for playing such a role. Here, using site-directed mutagenesis and fluorescent probe displacements, we show that Lys112 is the major determinant for governing hOBP-2A specificity towards aldehydes and small carboxylic acids.  相似文献   

6.
C-C chemokine receptor 5 (CCR5), a member of G-protein-coupled receptors, serves as a coreceptor for human immunodeficiency virus type 1 (HIV-1). In the present study, we examined the interactions between CCR5 and novel CCR5 inhibitors containing the spirodiketopiperazine scaffolds AK530 and AK317, both of which were lodged in the hydrophobic cavity located between the upper transmembrane domain and the second extracellular loop (ECL2) of CCR5. Although substantial differences existed between the two inhibitors—AK530 had 10-fold-greater CCR5-binding affinity (Kd = 1.4 nM) than AK317 (16.7 nM)—their antiviral potencies were virtually identical (IC50 = 2.1 nM and 1.5 nM, respectively). Molecular dynamics simulations for unbound CCR5 showed hydrogen bond interactions among transmembrane residues Y108, E283, and Y251, which were crucial for HIV-1-gp120/sCD4 complex binding and HIV-1 fusion. Indeed, AK530 and AK317, when bound to CCR5, disrupted these interhelix hydrogen bond interactions, a salient molecular mechanism enabling allosteric inhibition. Mutagenesis and structural analysis showed that ECL2 consists of a part of the hydrophobic cavity for both inhibitors, although AK317 is more tightly engaged with ECL2 than AK530, explaining their similar anti-HIV-1 potencies despite the difference in Kd values. We also found that amino acid residues in the β-hairpin structural motif of ECL2 are critical for HIV-1-elicited fusion and binding of the spirodiketopiperazine-based inhibitors to CCR5. The direct ECL2-engaging property of the inhibitors likely produces an ECL2 conformation, which HIV-1 gp120 cannot bind to, but also prohibits HIV-1 from utilizing the “inhibitor-bound” CCR5 for cellular entry—a mechanism of HIV-1's resistance to CCR5 inhibitors. The data should not only help delineate the dynamics of CCR5 following inhibitor binding but also aid in designing CCR5 inhibitors that are more potent against HIV-1 and prevent or delay the emergence of resistant HIV-1 variants.  相似文献   

7.
The work presented here describes a new and simple method based on site-directed fluorescence labeling using the BADAN label that permits the examination of protein-lipid interactions in great detail. We applied this technique to a membrane-embedded, mainly α-helical reference protein, the M13 major coat protein. Using a high-throughput approach, 40 site-specific cysteine mutants were prepared of the 50-residues long protein. The steady-state fluorescence spectra were analyzed using a three-component spectral model that enabled the separation of Stokes shift contributions from water and internal label dynamics, and protein topology. We found that most of the fluorescence originated from BADAN labels that were hydrogen-bonded to water molecules even within the hydrophobic core of the membrane. Our spectral decomposition method revealed the embedment and topology of the labeled protein in the membrane bilayer under various conditions of headgroup charge and lipid chain length, as well as key characteristics of the membrane such as hydration level and local polarity, provided by the local dielectric constant.  相似文献   

8.
RecA protein recognises two complementary DNA strands for homologous recombination. To gain insight into the molecular mechanism, the thermodynamic parameters of the DNA binding have been characterised by isothermal calorimetry. Specifically, conformational changes of protein and DNA were searched for by measuring variations in enthalpy change (DeltaH) with temperature (heat capacity change, DeltaC(p)). In the presence of the ATP analogue ATPgammaS, the DeltaH for the binding of the first DNA strand depends upon temperature (large DeltaC(p)) and the type of buffer, in a way that is consistent with the organisation of disordered parts and the protonation of RecA upon complex formation. In contrast, the binding of the second DNA strand occurs without any pronounced DeltaC(p), indicating the absence of further reorganisation of the RecA-DNA filament. In agreement with these findings, a significant change in the CD spectrum of RecA was observed only upon the binding of the first DNA strand. In the absence of nucleotide cofactor, the DeltaH of DNA binding is almost independent of temperature, indicating a requirement for ATP in the reorganisation of RecA. When the second DNA strand is complementary to the first, the DeltaH is larger than that for non-complementary DNA strand, but less than the DeltaH of the annealing of the complementary DNA without RecA. This small DeltaH could reflect a weak binding that may facilitate the dissociation of only partly complementary DNA and thus speed the search for complementary DNA. The DeltaH of binding DNA sequences displaying strong base-base stacking is small for both the first and second binding DNA strand, suggesting that the second is also stretched upon interaction with RecA. These results support the proposal that the RecA protein restructures DNA, preparing it for the recognition of a complementary second DNA strand, and that the recognition is due mainly to direct base-base contacts between DNA strands.  相似文献   

9.
G-protein-coupled receptors (GPCRs) are the largest group of cell surface molecules involved in signal transduction and are receptors for a wide variety of stimuli ranging from light, calcium and odourants to biogenic amines and peptides. It is assumed that systematic genomic data-mining has identified the overwhelming majority of all remaining GPCRs in the genome. Here we report the cloning of a novel orphan GPCR which was identified in a search for erythropoietin-induced genes in the brain as a strongly up-regulated gene. This unknown gene coded for a protein which had a seven-transmembrane topology and key features typical of GPCRs of the A family but a low overall identity to all known GPCRs. The protein, coded ee3, has an unusually high evolutionary conservation and is expressed in neurons in diverse areas of the CNS with relation to integrative functions or motor tasks. A yeast two-hybrid screen for interacting proteins revealed binding to the microtubule-associated protein (MAP) 1b. Coupling to MAP1a has been described for another cognate GPCR, the 5-hydroxytryptamine (5HT) 2a receptor. Surprisingly, we found complete colocalization of ee3 and the 5HT2a receptor. The interaction with MAP1b proved to be critical for the stability or folding of ee3 as in mice lacking MAP1b the ee3 protein was undetectable by immunohistochemistry, although messenger RNA levels remained unchanged. We propose that ee3 is a highly interesting new orphan GPCR with potential connections to erythropoietin and 5HT2a receptor signalling.  相似文献   

10.
The X-ray structure of the ligand-binding core of the kainate receptor GluR5 (GluR5-S1S2) in complex with (S)-glutamate was determined to 1.95 A resolution. The overall GluR5-S1S2 structure comprises two domains and is similar to the related AMPA receptor GluR2-S1S2J. (S)-glutamate binds as in GluR2-S1S2J. Distinct features are observed for Ser741, which stabilizes a highly coordinated network of water molecules and forms an interdomain bridge. The GluR5 complex exhibits a high degree of domain closure (26 degrees) relative to apo GluR2-S1S2J. In addition, GluR5-S1S2 forms a novel dimer interface with a different arrangement of the two protomers compared to GluR2-S1S2J.  相似文献   

11.
The effects of various surfactants on the activity and stability of the human adenosine A3 receptor (A3) were investigated. The receptor was expressed using stably transfected HEK293 cells at a concentration of 44 pmol functional receptor per milligram membrane protein and purified using over 50 different nonionic surfactants. A strong correlation was observed between a surfactant's ability to remove A3 from the membrane and the ability of the surfactant to remove A3 selectively relative to other membrane proteins. The activity of A3 once purified also correlates well with the selectivity of the surfactant used. The effects of varying the surfactant were much stronger than those achieved by including A3 ligands in the purification scheme. Notably, all surfactants that gave high efficiency, selectivity and activity fall within a narrow range of hydrophile-lipophile balance values. This effect may reflect the ability of the surfactant to pack effectively at the hydrophobic transmembrane interface. These findings emphasize the importance of identifying appropriate surfactants for a particular membrane protein, and offer promise for the development of rapid, efficient, and systematic methods to facilitate membrane protein purification.  相似文献   

12.
The Smith-Lemli-Opitz Syndrome (SLOS) is a congenital and developmental malformation syndrome associated with defective cholesterol biosynthesis. SLOS is clinically diagnosed by reduced plasma levels of cholesterol along with elevated levels of 7-dehydrocholesterol (and its positional isomer 8-dehydrocholesterol) and the ratio of their concentrations to that of cholesterol. Since SLOS is associated with neurological deformities and malfunction, exploring the function of neuronal receptors and their interaction with membrane cholesterol under these conditions assumes significance. We have earlier shown the requirement of membrane cholesterol for the ligand binding function of an important neurotransmitter G-protein coupled receptor, the serotonin1A receptor. In the present work, we have generated a cellular model of SLOS using CHO cells stably expressing the human serotonin1A receptor. This was achieved by metabolically inhibiting the biosynthesis of cholesterol, utilizing a specific inhibitor (AY 9944) of the enzyme required in the final step of cholesterol biosynthesis. We utilized this cellular model to monitor the function of the human serotonin1A receptor under SLOS-like condition. Our results show that ligand binding activity, G-protein coupling and downstream signaling of serotonin1A receptors are impaired in SLOS-like condition, although the membrane receptor level does not exhibit any reduction. Importantly, metabolic replenishment of cholesterol using serum partially restored the ligand binding activity of the serotonin1A receptor. These results are potentially useful in developing strategies for the future treatment of the disease since intake of dietary cholesterol is the only feasible treatment for SLOS patients.  相似文献   

13.
Interconversion of d-ribose-5-phosphate (R5P) and d-ribulose-5-phosphate is an important step in the pentose phosphate pathway. Two unrelated enzymes with R5P isomerase activity were first identified in Escherichia coli, RpiA and RpiB. In this organism, the essential 5-carbon sugars were thought to be processed by RpiA, while the primary role of RpiB was suggested to instead be interconversion of the rare 6-carbon sugars d-allose-6-phosphate (All6P) and d-allulose-6-phosphate. In Mycobacterium tuberculosis, where only an RpiB is found, the 5-carbon sugars are believed to be the enzyme's primary substrates. Here, we present kinetic studies examining the All6P isomerase activity of the RpiBs from these two organisms and show that only the E. coli enzyme can catalyze the reaction efficiently. All6P instead acts as an inhibitor of the M. tuberculosis enzyme in its action on R5P. X-ray studies of the M. tuberculosis enzyme co-crystallized with All6P and 5-deoxy-5-phospho-d-ribonohydroxamate (an inhibitor designed to mimic the 6-carbon sugar) and comparison with the E. coli enzyme's structure allowed us to identify differences in the active sites that explain the kinetic results. Two other structures, that of a mutant E. coli RpiB in which histidine 99 was changed to asparagine and that of wild-type M. tuberculosis enzyme, both co-crystallized with the substrate ribose-5-phosphate, shed additional light on the reaction mechanism of RpiBs generally.  相似文献   

14.
The role of anchorless proteins on the surface of most pathogenic microorganisms has long been studied in context to their interactions with multiple host proteins, facilitating the dissemination of pathogen within the host tissues. In order to gain more insights into anthrax pathogenesis, we hereby report the presence of a prominent moonlighting enzyme, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface and in the extracellular medium of Bacillus anthracis. Out of the three heterologously expressed recombinant isoforms, rGapA (334 amino acids in native form; GapA) showed a significant NAD+ mediated GAPDH activity, whereas rGapB (342 amino acids in native form; GapB) showed a slight activity with NADP+. The rGapN (479 amino acids in native form; GapN) was enzymatically inactive with either NAD+ or NADP+. GapA was ascertained to be present in the extracellular medium and on the surface of B. anthracis. On the other hand, GapN was absent from both the surface and extracellular medium, whereas GapB was scarcely present on the surface of B. anthracis. Human plasminogen predominantly interacted with the rGapA isoform at physiological concentrations and the interaction was found to be lysine dependent. Immunization with rGapA resulted in a significant protection upon challenge with Bacillus anthracis in the murine model.  相似文献   

15.
NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.  相似文献   

16.
3′-Phospho-adenosine-5′-phosphosulphate (PAPS) synthases are fundamental to mammalian sulphate metabolism. These enzymes have recently been linked to a rising number of human diseases. Despite many studies, it is not yet understood how the mammalian PAPS synthases 1 and 2 interact with each other. We provide first evidence for heterodimerisation of these two enzymes by pull-down assays and Förster resonance energy transfer (FRET) measurements. Kinetics of dimer dissociation/association indicates that these heterodimers form as soon as PAPSS1 and -S2 encounter each other in solution. Affinity of the homo- and heterodimers were found to be in the low nanomolar range using anisotropy measurements employing proteins labelled with the fluorescent dye IAEDANS that - in spite of its low quantum yield - is well suited for anisotropy due to its large Stokes shift. Within its kinase domain, the PAPS synthase heterodimer displays similar substrate inhibition by adenosine-5′-phosphosulphate (APS) as the homodimers. Due to divergent catalytic efficacies of PAPSS1 and -S2, the heterodimer might be a way of regulating PAPS synthase function within mammalian cells.  相似文献   

17.

Background

Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation.

Methods

J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases.

Results

ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP.

Conclusions

Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin.

General significance

ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.  相似文献   

18.
Fructosamine-3-kinase (FN3K) phosphorylates fructosamines to fructosamine-3-phosphates. Recent data from FN3K-knockout mouse indicate that this phosphorylation results in deglycation of proteins modified by non-enzymatic glycation process. A homolog of FN3K, the FN3K-related-protein (FN3KRP) displays 65% amino acid sequence identity with FN3K and is highly conserved in evolution. However, FN3KRP does not phosphorylate substrates of FN3K such as fructoselysine and its physiological function remains unknown. We observed that human erythrocytes that contain both enzymes phosphorylate N-methylglucamine (meglumine) to two products. One of these is meglumine-3-phosphate (Meg3P), an activity consistent with the known substrate specificity of FN3K. Here, we identify the second product as meglumine-4-phosphate (Meg4P) and show that it is produced specifically by FN3KRP. While it is unlikely that meglumine is the physiological target of FN3KRP, this novel specificity, along with FN3KRPs known phosphorylation of some ketosamines on the C-3 hydroxyl may prove useful in identifying the physiological substrates of this kinase.  相似文献   

19.
The semaphorins are a large family of proteins that act as guidance signals for axons and dendrites. The class 4 semaphorins are integral membrane proteins that are widely expressed throughout the nervous system. Here, we show that a subclass of these semaphorins is characterized by a PDZ-binding motif at their carboxy-terminus. This sequence mediates the interaction with the post-synaptic density protein PSD-95/SAP90. Co-expression of Sema4B with PSD-95 in COS 7 cells results in the clustering of Sema4B. Sema4B co-localizes with PSD-95 at synaptic contacts between cultured hippocampal neurons. This synaptic localization depends on the presence of the PDZ-binding motif.  相似文献   

20.
Many agents (e.g. camptothecins, indolocarbazoles, indenoisoquinolines, and dibenzonaphthyridines) stimulate topoisomerase I (TOP1)-mediated DNA cleavage (a behavior termed topoisomerase I poisoning) by interacting with both the DNA and the enzyme at the site of cleavage (typically by intercalation between the -1 and +1 base-pairs). The bibenzimidazoles, which include Hoechst 33258 and 33342, are a family of DNA minor groove-directed agents that also stimulate topoisomerase I-mediated DNA cleavage. However, the molecular mechanism by which these ligands poison TOP1 is poorly understood. Toward this goal, we have used a combination of mutational, footprinting, and DNA binding affinity analyses to define the DNA binding site for Hoechst 33258 and a related derivative that results in optimal induction of TOP1-mediated DNA cleavage. We show that this DNA binding site is located downstream from the site of DNA cleavage, encompassing the base-pairs from position +4 to +8. The distal nature of this binding site relative to the site of DNA cleavage suggests that minor groove-directed agents like the bibenzimidazoles poison TOP1 via a mechanism distinct from compounds like the camptothecins, which interact at the site of cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号