首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host control of Mycobacterium tuberculosis is dependent on the activation of CD4+ T cells secreting IFN-gamma and their recruitment to the site of infection. The development of more efficient vaccines against tuberculosis requires detailed understanding of the induction and maintenance of T cell immunity. Cytokines important for the development of cell-mediated immunity include IL-12 and IL-23, which share the p40 subunit and the IL-12Rbeta1 signaling chain. To explore the differential effect of IL-12 and IL-23 during M. tuberculosis infection, we used plasmids expressing IL-23 (p2AIL-23) or IL-12 (p2AIL-12) alone in dendritic cells or macrophages from IL-12p40(-/-) mice. In the absence of the IL-12/IL-23 axis, immunization with a DNA vaccine expressing the M. tuberculosis Ag85B induced a limited Ag-specific T cell response and no control of M. tuberculosis infection. Co-delivery of p2AIL-23 or p2AIL-12 with DNA85B induced strong proliferative and IFN-gamma-secreting T cell responses equivalent to those observed in wild-type mice immunized with DNA85B. This response resulted in partial protection against aerosol M. tuberculosis; however, the protective effect was less than in wild-type mice owing to the requirement for IL-12 or IL-23 for the optimal expansion of IFN-gamma-secreting T cells. Interestingly, bacillus Calmette-Guérin immune T cells generated in the absence of IL-12 or IL-23 were deficient in IFN-gamma production, but exhibited a robust IL-17 secretion associated with a degree of protection against pulmonary infection. Therefore, exogenous IL-23 can complement IL-12 deficiency for the initial expansion of Ag-specific T cells and is not essential for the development of potentially protective IL-17-secreting T cells.  相似文献   

2.
Clarifying how an initial protective immune response to tuberculosis may later loose its efficacy is essential to understand tuberculosis pathology and to develop novel vaccines. In mice, a primary vaccination with Ag85B-encoding plasmid DNA (DNA-85B) was protective against Mycobacterium tuberculosis (MTB) infection and associated with Ag85B-specific CD4+ T cells producing IFN-gamma and controlling intramacrophagic MTB growth. Surprisingly, this protection was eliminated by Ag85B protein boosting. Loss of protection was associated with a overwhelming CD4+ T cell proliferation and IFN-gamma production in response to Ag85B protein, despite restraint of Th1 response by CD8+ T cell-dependent mechanisms and activation of CD4+ T cell-dependent IL-10 secretion. Importantly, these Ag85B-responding CD4+ T cells lost the ability to produce IFN-gamma and control MTB intramacrophagic growth in coculture with MTB-infected macrophages, suggesting that the protein-dependent expansion of non-protective CD4+ T cells determined dilution or loss of the protective Ag85B-specific CD4+ induced by DNA-85B vaccination. These data emphasize the need of exerting some caution in adopting aggressive DNA-priming, protein-booster schedules for MTB vaccines. They also suggest that Ag85B protein secreted during MTB infection could be involved in the instability of protective anti-tuberculosis immune response, and actually concur to disease progression.  相似文献   

3.
The interaction between IFN-gamma-secreting CD4+ T cells and macrophages has long been established as integral in the protective immune response against tuberculosis. More recently, evidence from murine experiments and human studies has begun to demonstrate an essential role for MHC class I restricted CD8+ T cells in this immune response. CD8+ T cells can produce the protective cytokines IFN-gamma and TNF-alpha in addition to their classical cytolytic functions. However, the exact protective mechanisms and antigens recognized by these important cells remain poorly characterized.  相似文献   

4.
IL-12 is a potent inducer of IFN-gamma production and promotes a protective cell-mediated immune response after Mycobacterium tuberculosis infection. Recently, the IL-12-related cytokine IL-27 was discovered, and WSX-1 was identified as one component of the IL-27R complex. To determine the functional significance of IL-27/WSX-1 during tuberculosis, we analyzed the course of infection and the immune response in WSX-1-KO mice after aerosol infection with M. tuberculosis. In the absence of WSX-1, an increased production of the proinflammatory cytokines TNF and IL-12p40 resulted in elevated CD4+ T cell activation and IFN-gamma production, which enhanced macrophage effector functions and reduced bacterial loads. This is the first occasion of a selectively gene-deficient mouse strain showing higher levels of protective immunity against M. tuberculosis infection than wild-type mice. However, a concomitantly increased chronic inflammatory response also accelerated death of infected WSX-1-KO mice. In vitro, IL-27 induced STAT3 phosphorylation and inhibited TNF and IL-12 production in activated peritoneal macrophages, indicating a novel feedback mechanism by which IL-27 can modulate excessive inflammation. In conclusion, IL-27 both prevents optimal antimycobacterial protection and limits the pathological sequelae of chronic inflammation.  相似文献   

5.
Modulating the host-immune response by the use of recombinant vaccines is a potential strategy to improve protection against microbial pathogens. In this study, we sought to determine whether secretion of murine GM-CSF by the bacillus Calmette-Guérin (BCG) vaccine influenced protective immunity against Mycobacterium tuberculosis. BCG-derived GM-CSF stimulated the in vitro generation of functional APCs from murine bone marrow precursors, as demonstrated by the infection-induced secretion of IL-12 by differentiated APCs, and the ability of these cells to present Ag to mycobacterium-specific T cells. Mice vaccinated with BCG secreting [corrected] murine GM-CSF (BCG:GM-CSF) showed increased numbers of CD11c+MHCII+ and CD11c-CD11b+F480+ cells compared with those vaccinated with control BCG, and this effect was most apparent in the draining lymph nodes at 7 and 14 days postvaccination. Vaccination with BCG:GM-CSF also resulted in enhanced expression of costimulatory molecules on migratory dendritic cells in the draining lymph nodes. The increased APC number was associated with an increase in the frequency of anti-mycobacterial IFN-gamma-secreting T cells generated after BCG:GM-CSF vaccination compared with vaccination with control BCG, and this effect was sustained up to 17 wk in the spleens of immunized mice. Vaccination with BCG:GM-CSF resulted in an approximately 10-fold increase in protection against disseminated M. tuberculosis infection compared with control BCG. This study demonstrates the potential of BCG secreting [corrected] immunostimulatory molecules as vaccines to protect against tuberculosis and suggests BCG:GM-CSF merits further appraisal as a candidate to control M. tuberculosis infection in humans.  相似文献   

6.
Interferon (IFN)-gamma plays an essential role in host defense against infection with Mycobacterium tuberculosis, and its synthesis is critically regulated by interleukin (IL)-12, IL-18 and the recently identified IL-23. The present study was designed to determine the roles of these cytokines in IFN-gamma-mediated host defenses against M. tuberculosis. For this purpose, we compared host protective responses in IL-12p40 and IL-18 double-knockout (DKO) mice (which lacked both IL-12/IL-18 and also IL-23) and IFN-gamma gene-disrupted (GKO) mice. DKO mice were more resistant to the infection than GKO mice, as indicated by their extended survival and reduced live colony numbers in spleen, liver and lung. IFN-gamma was detected by ELISA in liver and lung homogenates, but not in spleen and serum, and in all organs by RT-PCR in DKO mice at comparable or reduced levels to those in wild-type mice. IFN-gamma production was reduced by depletion of CD4+ T cells, but not of natural killer (NK), NKT, gammadeltaT and dendritic cells. Neutralization of IFN-gamma or TNF-alpha by specific monoclonal antibodies (mAbs) significantly shortened the survival time of the infected DKO mice. Furthermore, anti-TNF-alpha mAb partially attenuated IFN-gamma synthesis in the liver of these mice. Finally, the expression level of inducible nitric oxide synthase (iNOS) mRNA in the spleen, liver and lung was considerable in DKO mice but only marginal or undetected in GKO mice. Our results indicate the presence of IL-12-, IL-18- and IL-23-independent host protective responses against mycobacterial infection mediated by IFN-gamma, which was secreted from helper T cells.  相似文献   

7.
Improving vaccines against tuberculosis   总被引:31,自引:0,他引:31  
Tuberculosis remains a major cause of mortality and physical and economic deprivation worldwide. There have been significant recent advances in our understanding of the Mycobacterium tuberculosis genome, mycobacterial genetics and the host determinants of protective immunity. Nevertheless, the challenge is to harness this information to develop a more effective vaccine than BCG, the attenuated strain of Mycobacterium bovis derived by Calmette and Guérin nearly 90 years ago. Some of the limitations of BCG include the waning of the protective immunity with time, reduced effectiveness against pulmonary tuberculosis compared to disseminated disease, and the problems of a live vaccine in immuno-compromised subjects. Two broad approaches to vaccine development are being pursued. New live vaccines include either attenuated strains of Mycobacterium tuberculosis produced by random mutagenesis or targeted deletion of putative virulence factors, or by genetic manipulation of BCG to express new antigens or cytokines. The second approach utilizes non-viable subunit vaccines to deliver immunodominant mycobacterial antigens. Both protein and DNA vaccines induce partial protection against experimental tuberculosis infection in mice, however, their efficacy has generally been equivalent to or less than that of BCG. The comparative effects of cytokine adjuvants and vaccines targeting antigen presenting cells on enhancing protection will be discussed. Coimmunization with plasmid interleukin-12 and a DNA vaccine expressing Antigen 85B, a major secreted protein, was as protective as BCG. The combination of priming with DNA-85B and boosting with BCG was superior to BCG alone. Therefore it is possible to achieve a greater level of protection against tuberculosis than with BCG, and this highlights the potential for new tuberculosis vaccines in humans.  相似文献   

8.
Protective immunity against Mycobacterium tuberculosis infection requires the activation of mycobacterium-specific CD8+ T cells, as well as CD4+ T cells. Therefore, optimizing strategies that stimulate CD8+ T cells recognizing dominant mycobacterial antigens, including secreted proteins, may lead to the development of more effective vaccines against tuberculosis. To generate a viral vaccine that is safe in humans, the early secreted protein, MPT64, was expressed in the attenuated vaccinia virus (VV) strain, modified vaccinia virus Ankara (MVA-64). The immunogenicity of MVA-64 was compared with that of the Western Reserve strain of VV (VVWR-64). The replication-defective MVA-64 was as efficient as VVWR-64 in inducing specific antibodies and cytolytic T-cell responses to a defined H-2-Db-restricted epitope on MTP-64. In addition, priming with MPT64-expressing plasmid DNA (DNA-64), and boosting with either MVA-64 or VVWR-64, markedly enhanced MPT64-specific cytolytic and IFN-gamma-producing CD8+ T-cell responses. These findings suggest that MVA may be a suitable vaccine carrier for stimulating mycobacterium-specific CD8+ T-cell responses and may be particularly relevant for developing vaccines for use in regions endemic for tuberculosis and HIV infection.  相似文献   

9.
Protective immunity against Listeria monocytogenes strongly depends on CD8+ T lymphocytes, and both IFN-gamma secretion and target cell killing are considered relevant to protection. We analyzed whether we could induce a protective type 1 immune response by DNA vaccination with the gene gun using plasmids encoding for two immunodominant listerial Ags, listeriolysin and p60. To induce a Th1 response, we 1) coprecipitated a plasmid encoding for GM-CSF, 2) employed a prime/boost vaccination schedule with a 45-day interval, and 3) coinjected oligodeoxynucleotides (ODN) containing immunostimulatory CpG motifs. DNA immunization of BALB/c mice with plasmids encoding for listeriolysin (pChly) and p60 (pCiap) efficiently induced MHC class I-restricted, Ag-specific CD8+ T cells that produced IFN-gamma. Coinjection of CpG-ODN significantly increased the frequency of specific IFN-gamma-secreting T cells. Although pChly induced specific CD8+ T cells expressing CTL activity, it failed to stimulate CD4+ T cells. Only pCiap induced significant CD4+ T cell and humoral responses, which were predominantly of Th2 type. Vaccination with either plasmid induced protective immunity against listerial challenge, and coinjection of CpG ODN improved vaccine efficacy in some situations. This study demonstrates the feasibility of gene gun administration of plasmid DNA for inducing immunity against an intracellular pathogen for which protection primarily depends on type 1 CD8+ T cells.  相似文献   

10.
We studied the role of NK cells in regulating human CD8+ T cell effector function against mononuclear phagocytes infected with the intracellular pathogen Mycobacterium tuberculosis. Depletion of NK cells from PBMC of healthy tuberculin reactors reduced the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ cells and decreased their capacity to lyse M. tuberculosis-infected monocytes. The frequency of CD8+ IFN-gamma+ cells was restored by soluble factors produced by activated NK cells and was dependent on IFN-gamma, IL-15, and IL-18. M. tuberculosis-activated NK cells produced IFN-gamma, activated NK cells stimulated infected monocytes to produce IL-15 and IL-18, and production of IL-15 and IL-18 were inhibited by anti-IFN-gamma. These findings suggest that NK cells maintain the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ T cells by producing IFN-gamma, which elicits secretion of IL-15 and IL-18 by monocytes. These monokines in turn favor expansion of Tc1 CD8+ T cells. The capacity of NK cells to prime CD8+ T cells to lyse M. tuberculosis-infected target cells required cell-cell contact between NK cells and infected monocytes and depended on interactions between the CD40 ligand on NK cells and CD40 on infected monocytes. NK cells link the innate and the adaptive immune responses by optimizing the capacity of CD8+ T cells to produce IFN-gamma and to lyse infected cells, functions that are critical for protective immunity against M. tuberculosis and other intracellular pathogens.  相似文献   

11.
Two candidate DNA vaccines based on the proteins CFP10 and CFP21 encoded by regions of difference (RDs) of Mycobacterium tuberculosis were evaluated individually and in multivalent combination with the immunodominant protein Ag85B for induction of protective immune responses against experimental tuberculosis. Experimental DNA vaccines induced substantial levels of cell-mediated immune responses as indicated by marked lymphocyte proliferation, significant release of the Th1 cytokines IFN-gamma and IL-12 (p40), and predominant cytotoxic T cell activity. High levels of antigen-specific IgG1 and IgG2a antibodies observed in the sera of immunized mice depicted strong humoral responses generated by DNA vaccine constructs. The multivalent combination of three DNA vaccine constructs induced maximal T cell and humoral immune responses. All the experimental vaccines imparted significant protection against challenge with M. tuberculosis H(37)Rv (in terms of colony-forming unit reduction in lungs and spleen) as compared to vector controls. The level of protection exhibited by multivalent DNA vaccine formulation was found to be equivalent to that of Mycobacterium bovis BCG observed both at 4 and 8 weeks post-challenge. These results show the protective potential of the multivalent DNA vaccine formulation used in this study.  相似文献   

12.
Protocols of immunization based on the DNA prime/vaccinia virus (VV) boost regime with recombinants expressing relevant antigens have been shown to elicit protection against a variety of pathogens in animal model systems, and various phase I clinical trials have been initiated with this vaccination approach. We have previously shown that mice immunized with a DNA vector expressing p36/LACK of Leishmania infantum followed by a booster with VVp36/LACK induced significant protection against Leishmania major infection. To further improve this protocol of immunization, here we investigated whether the cytokines interleukin-12 (IL-12) and IL-18 could enhance protection against L. major infection in BALB/c mice. We found that priming with DNA vectors expressing p36/LACK and either IL-12 or IL-18, followed by a booster with a VV recombinant expressing the same L. infantum LACK antigen, elicit a higher cellular immune response than by using the same protocol in the absence of the cytokines. The cytokine IL-12 triggered a higher number of IFN-gamma-secreting cells specific for p36 protein than IL-18. When immunized animals were challenged with promastigotes, the highest protection against L. major infection was observed in animals primed with DNAp36 + DNA IL-12 + DNA IL-18 and boosted with VVp36. This protection correlated with a Th1 type of immune response. Our findings revealed that in prime/booster protocols, co-expressing IL-12 and IL-18 during priming is an efficient approach to protect against leishmaniasis. This combined prime/booster immunization regime could have wide use in fighting against parasitic and other infectious diseases.  相似文献   

13.
In the current study of Mycobacterium tuberculosis (MTB)-specific T and B cells, we found that MTB-specific peptides from early secreted antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) induced the expression of IL-21 predominantly in CD4+ T cells. A fraction of IL-21-expressing CD4+ T cells simultaneously expressed Th1 cytokines but did not secrete Th2 or Th17 cytokines, suggesting that MTB-specific IL-21-expressing CD4+ T cells were different from Th1, Th2 and Th17 subpopulations. The majority of MTB-specific IL-21-expressing CD4+ T cells co-expressed IFN-γ and IL-21+IFN-γ+CD4+ T cells exhibited obviously polyfunctionality. In addition, MTB-specific IL-21-expressing CD4+ T cells displayed a CD45RO+CD62LlowCCR7lowCD40LhighICOShigh phenotype. Bcl-6-expression was significantly higher in IL-21-expressing CD4+ T cells than IL-21-CD4+ T cells. Moreover, IL-12 could up-regulate MTB-specific IL-21 expression, especially the frequency of IL-21+IFN-γ+CD4+ T cells. Taken together, our results demonstrated that MTB-specific IL-21+IFN-γ+CD4+ T cells from local sites of tuberculosis (TB) infection could be enhanced by IL-12, which have the features of both Tfh and Th1 cells and may have an important role in local immune responses against TB infection.  相似文献   

14.
There is an urgent need for effective prophylactic measures against Mycobacterium tuberculosis (Mtb) infection, particularly given the highly variable efficacy of Bacille Calmette-Guerin (BCG), the only licensed vaccine against tuberculosis (TB). Most studies indicate that cell-mediated immune responses involving both CD4+ and CD8+ T cells are necessary for effective immunity against Mtb. Genetic vaccination induces humoral and cellular immune responses, including CD4+ and CD8+ T-cell responses, against a variety of bacterial, viral, parasitic and tumor antigens, and this strategy may therefore hold promise for the development of more effective TB vaccines. Novel formulations and delivery strategies to improve the immunogenicity of DNA-based vaccines have recently been evaluated, and have shown varying degrees of success. In the present study, we evaluated DNA-launched Venezuelan equine encephalitis replicons (Vrep) encoding a novel fusion of the mycobacterial antigens α-crystallin (Acr) and antigen 85B (Ag85B), termed Vrep-Acr/Ag85B, for their immunogenicity and protective efficacy in a murine model of pulmonary TB. Vrep-Acr/Ag85B generated antigen-specific CD4+ and CD8+ T cell responses that persisted for at least 10 wk post-immunization. Interestingly, parenterally administered Vrep-Acr/Ag85B also induced T cell responses in the lung tissues, the primary site of infection, and inhibited bacterial growth in both the lungs and spleens following aerosol challenge with Mtb. DNA-launched Vrep may, therefore, represent an effective approach to the development of gene-based vaccines against TB, particularly as components of heterologous prime-boost strategies or as BCG boosters.  相似文献   

15.
Mannoprotein from Cryptococcus neoformans induces protective response against a lethal challenge with this fungus or with Candida albicans. This phenomenon is largely related to early production of interleukin 12 (IL-12) and induction of T helper 1 response. Our study assesses whether the early absence of this critical cytokine could account for the incomplete activation of cellular response and whether the immune system compensates this imbalance. The results show that the neutralization of early IL-12 enhanced IL-18 production but decreased IFN-gamma secretion and IL-12R expression by splenic CD4 T cells. In contrast, IL-18R was not augmented despite an increase in IL-18 production. The co-stimulatory pathway was partially dysregulated because splenic macrophages showed unmodified B7-2, and a decrease of B7-1 expression. This dysregulation led to incomplete proliferative response of T cells in response to Cryptococcus neoformans and to increased fungal load in the brain 21 days post infection. The inability to dispose early IL-12, forced the immune system to compensate the imbalance and produced a series of long-lasting dysregulations involving the co-stimulatory pathway and T cell activation.  相似文献   

16.
Fan X  Gao Q  Fu R 《Microbiological research》2009,164(4):374-382
BALB/c mice were vaccinated three times (2-week intervals) with plasmid DNA separately encoding antigen Ag85B, ESAT-6 or Ag85A from Mycobacterium tuberculosis. The protective efficacy of these DNA vaccines against intravenous M. tuberculosis H37Rv challenge infection was measured by counting bacterial loads in spleen and lung and recording changes in lung pathology. The splenocyte proliferative response to the corresponding antigens and antigen-specific interferon (IFN)-γ secreted by splenocytes of the vaccinated mice were also detected. We found a clear hierarchy of protective efficacies among the three DNA vaccines tested in this study. Plasmid DNA encoding Ag85A provided the strongest protection and showed the least change in lung pathology, followed by plasmid DNAs encoding Ag85B and ESAT-6. However, DNA-85B reduced comparative bacterial load in lung tissue, as did DNA-85A. Compared to the control group, protective efficacies conferred by different DNA vaccines were consistent with the lymphoproliferative responses to the corresponding antigens as well as the secretions of antigen-specific IFN-γ. Our study demonstrates that both Ag85A and Ag85B are the most promising of the candidate antigens tested for future TB vaccine development.  相似文献   

17.
Cai H  Yu DH  Hu XD  Li SX  Zhu YX 《DNA and cell biology》2006,25(8):438-447
In this study, we demonstrated that calves vaccinated with a combined DNA vaccine encoding Ag85B, MPT- 64, and MPT-83 antigens from the Mycobacterium tuberculosis for the priming and subsequently boosting with BCG prior to experimental challenge with virulent Mycobacterium bovis (M. bovis) resulted in improved immune responses over immunizing. Vaccination with the combined DNA/BCG induced higher levels of antigen- specific gamma interferon (IFN-gamma) in whole-blood cultures 4 weeks after final vaccination and the level of antigen-specific IFN-gamma in response to Ag85, MPT-64, and MPT-83 were still higher 4 weeks after challenge when compared to the combined DNA group. There was a significant bias toward induction of CD4+ T cells rather than CD8+ T cells responses, and the mean percentage of CD4+ T cells was increased about 2.6-fold in peripheral blood mononuclear cells (PBMC) cultures in DNA prime-BCG boost vaccination when compared to the nonvaccinated group. In addition, DNA prime-BCG boost vaccination resulted in stronger humoral immune responses, and the levels of the specific antibodies to three antigens were increased two- to 32- fold when compared to the combined DNA group. Vaccination with the combined DNA/BCG induced a high level of protection against an intratracheal challenge with virulent M. bovis, based on a significant enhancement of six pathological and microbiological parameters of protection compared to the nonvaccinated group. Finally, the combined DNA/BCG increased the protective efficacy by more than 10-100-fold as measured by reduced CFU counts in the lungs from calves challenged with M. bovis compared to the combined DNA and BCG groups. These results suggest that use of the prime-boost strategy offers better protection against bovine tuberculosis than does the combined DNA vaccines and BCG.  相似文献   

18.
Cai H  Yu DH  Tian X  Zhu YX 《DNA and cell biology》2005,24(10):605-613
Coadministration of interleukin 2(IL-2) plasmid DNA with combined DNA vaccines enhanced Th1-type cellular responses by producing higher amounts of IFN-gamma with a higher ratio of antigen-specific IgG2a/IgG1. The IFN-gamma specific for Ag85B, MPT64, and MPT83 in this group was 415, 267, and 255 U/ml, respectively, and was 1.6-, 1.8-, and 2.5-fold higher than that of the same vaccine without adding IL-2. The IgG2a/IgG1 ratio for Ag85B, MPT64, and MPT83 was 4, 8, and 4, respectively, upon addition of the genetic adjuvant in the DNA vaccine, which was four times higher for every antigen when IL-2 was not included. Fluorescence activated cell sorter (FACS) analysis showed that, in the presence of IL-2, CD8+ and CD4+ T cells increased significantly, whereas in the absence of the genetic adjuvant, only a mild increase was observed for CD8+ T cells compared to the vector DNA-treated group. Bacterial CFU was reduced to less than 1/100 in the lung and to about 1/10 in the spleen relative to the same combined DNA vaccine without IL-2. The lungs of this group of mice showed much less damage due to an influx of epithelioid macrophages and less lymphocytes. RT-PCR showed that antigen genes could be detected in more organs and for a longer period of time when treated with combined DNA vaccine formulated in IL-2. We suggest that IL-2 enhanced the immunigencity and protective efficacy in immunized mice by improving the Th1-type response and also by prolonging the antigen gene expression in different organs.  相似文献   

19.
Protective immune responses during Mycobacterium tuberculosis (M. tuberculosis) infection are regulated at multiple levels and critically dependent on the balance in the secretion of pro-inflammatory and regulatory cytokines. A key factor that governs this balance at the cellular level is suppressors of cytokine signaling (SOCS). We recently demonstrated that toll-like receptor 2 and dendritic cell (DC)-SIGNR1 differentially regulate SOCS1 expression in DCs during M. tuberculosis infection. This consecutively regulated IL-12 production and determined M. tuberculosis survival. In this study, we characterized the role of SOCS1 in regulating effector responses from CD4(+) and CD8(+) T cells during M. tuberculosis infection. Our data indicate that T cells from M. tuberculosis-infected mice show increased and differential association of SOCS1 with CD3 and CD28, when compared with uninfected mice. While SOCS1 displays increased association with CD3 than CD28 in CD4(+) T cells; SOCS1 is associated more with CD28 than CD3 in CD8(+) T cells. Further, SOCS1 shows increased association with IL-12 and IL-2 receptors in both CD4(+) and CD8(+) T cells from infected mice when compared with naive mice. Silencing SOCS1 in T cells increased signal transduction from T cell receptor (TCR) and CD28 with enhanced activation of key signaling molecules and proliferation. Significantly, SOCS1-silenced T cells mediated enhanced clearance of M. tuberculosis inside macrophages. Finally, adoptive transfer of SOCS1-silenced T cells in M. tuberculosis-infected mice mediated significant reduction in M. tuberculosis loads in spleen. These results exemplify the negative role played by SOCS1 during T cell priming and effector functions during M. tuberculosis infection.  相似文献   

20.
In this study, we evaluated the cellular influx and cytokine environment in the lungs of mice made immune by prior vaccination with Mycobacterium bovis bacillus Calmette-Guérin compared with control mice after infection with Mycobacterium tuberculosis to characterize composition of protective lesions in the lungs. Immune mice controlled the growth of the M. tuberculosis challenge more efficiently than control mice. In immune animals, granulomatous lesions were smaller and had a more lymphocytic core, less foamy cells, less parenchymal inflammation, and slower progression of lung pathology than in lungs of control mice. During the chronic stage of the infection, the bacterial load in the lungs of immune mice remained at a level 10 times lower than control mice, and this was associated with reduced numbers of CD4P(+P) and CD8P(+P) T cells, and the lower expression of protective (IL-12, IFN-gamma), inflammatory (TNF-alpha), immunoregulatory (GM-CSF), and immunosuppressive (IL-10) cytokines. The immune mice had higher numbers of CD11b- CD11c(high) DEC-205(low) alveolar macrophages, but lower numbers of CD11b+ CD11c(high) DEC-205(high) dendritic cells, with the latter expressing significantly lower levels of the antiapoptotic marker TNFR-associated factor-1. Moreover, during the early stage of chronic infection, lung dendritic cells from immune mice expressed higher levels of MHC class II and CD40 molecules than similar cells from control mice. These results indicate that while a chronic disease state is the eventual outcome in both control and immune mice infected with M. tuberculosis by aerosol exposure, immune mice develop a protective granulomatous lesion by increasing macrophage numbers and reduced expression of protective and inflammatory cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号