首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
c-Fes plays pivotal roles in angiogenic cellular responses of endothelial cells. Here we examined the role of c-Fes in vascular endothelial growth factor-A (VEGF-A)-mediated signaling pathways in endothelial cells. We introduced either wild-type or kinase-inactive c-Fes in porcine aortic endothelial (PAE) cell lines, which endogenously express VEGF receptor (VEGFR)-1, and PAE cells ectopically expressing VEGFR-2 (denoted KDR/PAE cells) and generated stable cell lines. VEGF-A induced autophosphorylation of c-Fes only in KDR/PAE cells, suggesting that VEGFR-2 was required for its activation. Expression of kinase-inactive c-Fes failed to demonstrate dominant negative effect on VEGF-A-induced chemotaxis and capillary morphogenesis. Phosphoinositide 3-kinase (PI3-kinase) was activated in KDR/PAE cells and c-Fes contributed to this process in a kinase activity-dependent manner. However, VEGFR-2, insulin receptor substrate-1, and c-Src were also involved in VEGF-A-induced activation of PI3-kinase, resulting in the compensation in cells expressing kinase-inactive c-Fes. Interestingly, overexpression of wild-type c-Fes in PAE cells induced VEGF-A-independent capillary morphogenesis. Considered collectively, VEGF-A activated PI3-kinase partly through c-Fes and increase in c-Fes kinase activity enhanced capillary morphogenesis by yet unknown signaling pathways.  相似文献   

3.
There is extensive ultrastructural evidence in endothelium for the presence of chained vesicles or clusters of attached vesicles, and they are considered to be involved in specific transport mechanisms, such as the formation of trans-endothelial channels. However, few details are known about their mechanical characteristics. In this study, the formation mechanism and mechanical aspects of vascular endothelial chained vesicles are investigated theoretically, based on membrane bending strain energy analysis. The shape of the axisymmetric vesicles was computed on the assumption that the cytoplasmic side of the vesicle has a molecular layer or cytoskeleton attached to the lipid bilayer, which induces a spontaneous curvature in the resting state. The bending strain energy is the only elasticity involved, while the shear elasticity is assumed to be negligible. The surface area of the membrane is assumed to be constant due to constant lipid bilayer thickness. Mechanically stable shapes of chained vesicles are revealed, in addition to a cylindrical tube shape. Unfolding of vesicles into a more flattened shape is associated with increase in bending energy without a significant increase in membrane tension. These results provide insights into the formation mechanism and mechanics of the chained vesicle.  相似文献   

4.
Present knowledge in the field of vascular endothelial cells is reviewed. The role of endothelial cells in the synthesis of matrix proteins and glycosaminoglycans is described. Endothelial cells play a considerable role in the processes of coagulation and fibrinolysis. They also interact with neurotransmitters and vasomotoric substances, and participate in inflammation and immunological responses. They produce several different growth factors. Their role in lipoprotein metabolism is of special importance to research into atherosclerosis.  相似文献   

5.
6.
Proangiogenic, proliferative effects of tumors have been extensively characterized in subconfluent endothelial cells (EC), but results in confluent, contact-inhibited EC are critically lacking. The present study examined the effect of tumor-conditioned medium (CM) of the malignant osteoblastic cell line MG63 on monolayer, quiescent bovine aorta EC. MG63-CM and MG63-CM + CoCl2 significantly increased EC survival in serum-starved conditions, without inducing EC proliferation. Furthermore, MG63-CM and MG63-CM + CoCl2, both containing high amounts of vascular endothelial growth factor (VEGF), induced relevant phenotypic changes in EC (all P < 0.01) involving increase of nucleoli/chromatin condensations, nucleus-to-cytosol ratio, capillary-like vacuolated structures, vessel-like acellular areas, migration through Matrigel, growth advantage in reseeding, and factor VIII content. All these actions were significantly inhibited by VEGF and VEGF receptor (VEGFR2) blockade. Of particular importance, a set of similar effects were detected in a human microvascular endothelial cell line (HMEC). With regard to gene expression, incubation with MG63-CM abolished endogenous VEGF mRNA and protein but induced a clear-cut increase in VEGFR2 mRNA expression in EC. In terms of mechanism, MG63-CM activates protein kinase B (PKB)/Akt, p44/p42-mitogen-activated protein kinase (MAPK)-mediated pathways, as suggested by both inhibition and phosphorylation experiments. In conclusion, tumor cells activate confluent, quiescent EC, promoting survival, phenotypic, and gene expression changes. Of importance, VEGF antagonism converts MG63-CM from protective to EC-damaging effects. vascular endothelial growth factor receptor 2; MG63-conditioned medium  相似文献   

7.
Leukocyte-platelet aggregation and aggregate adhesion have been indicated as biomarkers of the severity of tissue injury during inflammation or ischemic reperfusion. The objective of this study is to investigate the mechanisms of the aggregate adhesion and quantitatively evaluate its relationship with microvessel permeability. A combined autologous blood perfusion with single microvessel perfusion technique was employed in rat mesenteric venular microvessels. The aggregate adhesion was induced by systemic application of TNF-alpha plus local application of platelet-activating factor (PAF). Changes in permeability were determined by measurements of hydraulic conductivity (Lp) before and after aggregate adhesion in the same individually perfused microvessels. The compositions of the adherent aggregates were identified with fluorescent labeling and confocal imaging. In contrast to leukocyte adhesion as single cells resulting in no increase in microvessel permeability, aggregate adhesion induced prolonged increases in microvessel Lp (6.1 +/- 0.9 times the control, n = 9) indicated by the initial Lp measurements after 3 h of blood perfusion, which is distinct from the transient Lp increase caused by PAF-induced endothelial activation in the absence of blood. Isoproteronol (Iso) attenuated aggregate adhesion-mediated Lp increases if applied after autologous blood perfusion and prevented the aggregate adhesion if the initial endothelial activation is inhibited by applying Iso before PAF administration but showed less effect on single leukocyte adhesion. This study demonstrated that leukocyte-platelet aggregate adhesion via a mechanism different from that of single leukocyte adhesion caused a prolonged increase in microvessel permeability. Our results also indicate that the initial activation of endothelial cells by PAF plays a crucial role in the initiation of leukocyte-platelet aggregate adhesion.  相似文献   

8.
9.
10.
Stereoselectivity of ectonucleotidases on vascular endothelial cells.   总被引:12,自引:3,他引:12       下载免费PDF全文
We have investigated the stereoselectivity of ectonucleotidases (nucleoside triphosphatase, EC 3.6.1.15; nucleoside diphosphatase, EC 3.6.1.6; 5'-nucleotidase, EC 3.1.3.5) on pig aortic endothelial cells using two classes of nucleotide analogue. In experiments with nucleotide enantiomers in which the natural D-ribofuranosyl moiety is replaced by an L-ribofuranosyl moiety, the rate of catabolism of 100 microM-L-ATP was one-fifth that of D-ATP, the rate of catabolism of 100 microM-L-ADP was one-fifteenth that of D-ADP and there was no detectable catabolism of 100 microM-L-AMP. Each of the L-enantiomers inhibited, apparently competitively, the catabolism of the corresponding D-enantiomer; Ki values were approx. 0.6 mM, 1.0 mM and 3.9 mM for L-ATP, L-ADP and L-AMP respectively. Experiments with adenosine 5'-[beta, gamma-imido]triphosphate and with D- and L-enantiomers of adenosine 5'-[beta, gamma-methylene]triphosphate revealed modest ectopyrophosphatase activity, undetectable in experiments with natural nucleotides, which was also stereoselective. Use of phosphorothioate nucleotide analogues demonstrated that ATP catabolism was virtually stereospecific with respect to the geometry of the thiol group substituted on the beta-phosphate: the Rp isomer was degraded, whereas there was little or no breakdown of the Sp isomer. ADP catabolism was also stereospecific with respect to the geometry of the thiol group substituted on the alpha-phosphate: the Sp isomer but not the Rp isomer was degraded. The geometry of thiol-group substitution on the alpha-phosphate had no effect on ATP catabolism to ADP. There was no detectable catabolism of analogues with thiol-group substitution on the terminal phosphate. Each of the phosphorothioate analogues that was catabolized broke down at a rate similar to that of the natural nucleotide from which it was derived. These results demonstrate that the ectonucleotidases on pig aortic endothelial cells exhibit a high degree of stereoselectivity, characteristic for each enzyme, both with respect to the ribofuranosyl moiety and to the phosphate side chain.  相似文献   

11.
When bovine capillary endothelial (BCE) cells plated on type I collagen gel were covered with a second layer of collage gel, BCE cells reorganized into a network of capillary-like structures. In the presence of affinity purified anti-basic fibroblast growth factor (bFGF) antibody, this reorganization was inhibited. By using a computerized image analyzer, the formation of network structures and the effect of anti-bFGF antibody was quantitated. The inhibitory effect of anti-FGF antibody was dose-dependent and maximal inhibition was observed at 2.0 micrograms/ml of antibody. Exogenously added bFGF potentiated network formation of BCE cells and coadministration of bFGF abrogated the inhibitory effect of anti-bFGF antibody. Platelet factor 4, which blocks the binding of bFGF to its receptor, inhibited network formation. These results indicate that bFGF produced by endothelial cells regulates angiogenesis as an autocrine factor.  相似文献   

12.
Control of proliferation of bovine vascular endothelial cells.   总被引:17,自引:0,他引:17  
The effects of Fibroblast Growth Factor (FGF) and Epidermal Growth Factor (EGF) on the proliferation of bovine vascular endothelial cells has been examined. FGF induces the initiation of DNA synthesis and cell proliferation in cloned endothelial cells of fetal and adult origin at concentrations as low as 1 ng/ml and is saturating at 50 ng/ml. EGF had no effect over the same range of concentrations. The mitogenic effect of FGF is blocked by a crude extract of cartilage. Platelet extract is also mitogenic for vascular endothelial cells although to a lesser extent than the purified FGF. In contrast to vascular endothelial cells, both EGF and FGF are mitogenic for vascular smooth muscle cells although EGF is less mitogenic than FGF at 100 ng/ml. The mitogenic effect of EGF and FGF on vascular smooth muscle is not blocked by the addition of a crude extract of cartilage, thus demonstrating the specificity of the chalone like effect of cartilage crude extract for endothelial cells.  相似文献   

13.
The effect of cadmium chloride (CdCl2) on cultured human vascular endothelial (HVE) cells and cultured human fibroblasts (HAIN-55 cells) was investigated. Umbilical vein-derived HVE cells were collected by enzymatic digestion with collagenase. At the concentration of 0-10 microM, Cd had hardly any effect on the cell viability of either cells. The viability of HVE cells decreased markedly at 100 microM, but not that of HAIN-55 cells. Morphologic examination by phase contrast microscopy revealed a more damaging effect of Cd on HVE cells than on HAIN-55 cells. These results suggest that Cd is more cytotoxic to HVE cells than HAIN-55 cells.  相似文献   

14.
15.
血管内皮细胞内质网应激   总被引:2,自引:0,他引:2  
内质网是调控细胞内膜型/分泌型蛋白质合成、钙稳态和细胞凋亡的重要细胞器,多种因素影响内质网稳态、触发内质网应激。适当的内质网应激通过激活未折叠蛋白反应促进内质网紊乱的恢复,但过度内质网应激触发内质网相关凋亡途径,参与多种疾病的发生。血管内皮细胞具有高度发达的内质网,对内质网应激非常敏感,本文综述血管内皮细胞内质网应激反应及其在血管损伤相关疾病中的作用。  相似文献   

16.
血管内皮细胞容量激活的氯通道   总被引:4,自引:0,他引:4  
氯通道是血管内皮细胞上主要的离子通道,容量激活的氯通道是其中一种主要类型并广为研究。已经主宰容量激活的氯通道在维持静息膜电位,调节细胞内钙、pH值,影响细胞增殖和分化中起着重要的作用。本文综述了血管内皮细胞容量激活氯通道的基本电生理及分子生物学特性,并初步探讨该通道的调节机制。  相似文献   

17.
The data presented in this review clearly show that many different cytokines regulate the synthesis of PGI2 in vascular EC (Tables 1 & 2). Since these agents are synthesized, stored, and/or released from platelets, leukocytes and cells present in the vascular wall (Fig.), they are to be found at sites of vascular injury and may, through their effect on the synthesis of PGI2 and other prostanoids, regulate thrombogenesis and atherogenesis. Despite the mass of detailed data, the picture is still fragmentary. Very little, for instance, is known about the 'orchestral effects' of different combinations of cytokines. In addition, it seems that the regulation of PGI2 synthesis by cytokines varies with the species and with the type of vasculature from which the cells originated. However, discrepancies may also be due to the use of different culture conditions. Moreover, we must remember that the present data are almost exclusively from in vitro studies, and the representativeness of these results in in vivo situations remains to be clarified.  相似文献   

18.
Group B coxsackieviruses (CVB) are associated with viral-induced heart disease and are among the leading causes of aseptic meningitis worldwide. Here we show that CVB entry into polarized brain microvasculature and aortic endothelial cells triggers a depletion of intracellular calcium stores initiated through viral attachment to the apical attachment factor decay-accelerating factor. Calcium release was dependent upon a signaling cascade that required the activity of the Src family of tyrosine kinases, phospholipase C, and the inositol 1,4,5-trisphosphate receptor isoform 3. CVB-mediated calcium release was required for the activation of calpain-2, a calcium-dependent cysteine protease, which controlled the vesicular trafficking of internalized CVB particles. These data point to a specific role for calcium signaling in CVB entry into polarized endothelial monolayers and highlight the unique signaling mechanisms used by these viruses to cross endothelial barriers.  相似文献   

19.
20.
The precise role of vascular endothelial growth factor (VEGF) in regulating integrins in brain microvascular endothelial cells is unknown. Here, we analyzed VEGF effects on integrin expression and activation in human brain microvascular endothelial cells (HBMECs). Using human cDNA arrays and ribonuclease (RNase) protection assays, we observed that VEGF up-regulated the mRNA expression of alpha(6) integrin in HBMECs. VEGF significantly increased alpha(6)beta(1) integrin expression, but not alpha(6)beta(4) integrin expression in these cells. Specific down-regulation of alpha(6) integrin expression by small interfering RNA (siRNA) oligonucleotides inhibited both the capillary morphogenesis of HBMECs and their adhesion and migration. Additionally, VEGF treatment resulted in activation of alpha(6)beta(1) integrins in HBMECs. Functional blocking of alpha(6) integrin with its specific antibody inhibited the VEGF-induced adhesion and migration as well as in vivo angiogenesis, and markedly suppressed tumor angiogenesis and breast carcinoma growth in vivo. Thus, VEGF can modulate angiogenesis via increased expression and activation of alpha(6)beta(1) integrins, which may promote VEGF-driven tumor angiogenesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号