首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A functioning epidermal melanin unit implies a melanocyte capable of transferring melanosomes to keratinocytes; this requires not only melanocytes with adequate dendrites but also "receptive" keratinocytes. Skin with incontinentia pigmenti was examined by electron microscopy. Premelanosomes were occasionally found within keratinocytes and deposits of extracellular granular material that came from vacuolar degeneration of keratinocytes adjacent to melanocytes.  相似文献   

2.
It is now accepted that a conformational change of the cellular prion protein (PrPC) generates the prion, the infectious agent responsible for lethal neurodegenerative disorders, named transmissible spongiform encephalopathies, or prion diseases. The mechanisms of prion-associated neurodegeneration are still obscure, as is the cell role of PrPC, although increasing evidence attributes to PrPC important functions in cell survival. Such a behavioral dichotomy thus enables the prion protein to switch from a benign role under normal conditions, to the execution of neurons during disease. By reviewing data from models of prion disease and PrPC-null paradigms, which suggest a relation between the prion protein and Ca2+ homeostasis, here we discuss the possibility that Ca2+ is the factor behind the enigma of the pathophysiology of PrPC. Ca2+ features in almost all processes of cell signaling, and may thus tell us much about a protein that pivots between health and disease.  相似文献   

3.
The reconstruction of the epidermal melanin unit ex vivo has been achieved during the last decade, using the combination of previous cell culture techniques. The system reviewed is basically a modification of the Pruniéras model, using the air-liquid interface to grow differentiated keratinocytes, with the addition of 5% melanocytes in the seeding suspension, as well as the use of a more adapted culture medium. Repeated UVB irradiation induces a stimulation of melanogenesis macroscopically, and increases melanin concentration and melanosome transfer in reconstructs. These results have been reproduced with skin of various phototypes. This model allows to study the physiology of the epidermal melanin unit as well as pathologic conditions, like vitiligo and nevi. Recent evidence of a complex interaction of keratinocytes and melanocytes in photoprotection was provided by the use of chimeric reconstructs and by comparing autologous reconstructs made with and without low phototype caucasoid melanocytes. Based on these findings, we suggest a novel interpretation of the concept of phototype.  相似文献   

4.
5.
6.
7.
Exposure to solar ultraviolet radiation (UV) is the main etiological factor for skin cancer, including melanoma. Cutaneous pigmentation, particularly eumelanin, afforded by melanocytes is the main photoprotective mechanism, as it prevents UV-induced DNA damage in the epidermis. Therefore, maintaining genomic stability of melanocytes is crucial for prevention of melanoma, as well as keratinocyte-derived basal and squamous cell carcinoma. A critical independent factor for preventing melanoma is DNA repair capacity. The response of melanocytes to UV is mediated mainly by a network of paracrine factors that not only activate melanogenesis, but also DNA repair, anti-oxidant, and survival pathways that are pivotal for maintenance of genomic stability and prevention of malignant transformation or apoptosis. However, little is known about the stress response of melanocytes to UV and the regulation of DNA repair pathways in melanocytes. Unraveling these mechanisms might lead to strategies to prevent melanoma, as well as non-melanoma skin cancer.  相似文献   

8.
The following studies have been undertaken to compare and correlate the effects of 12-O-tetradecanoylphorbol acetate (TPA), basic fibroblast growth factor (bFGF), cholera toxin (CT), and isobutyl methylxanthine (IBMX) on neonatal human melanocyte (NHM) proliferation, tyrosinase activity, and cyclic adenosine monophosphate (cAMP) concentration. NHM proliferated at a maximal rate in medium containing 8 nM TPA, 200 ng/ml CT, and 10(-4) M IBMX. TPA alone did not result in optimal melanocyte proliferation, and, as previously shown, its mitogenic effect was greatly enhanced by the addition of CT and IBMX individually or concomitantly. Human recombinant (hr) bFGF could replace TPA in the NHM growth medium. Maximal proliferation was achieved using 3 ng/ml hrbFGF, 20 ng/ml CT, and 10(-4) M IBMX. The mitogenic effect of 1.2 ng/ml hrbFGF was potentiated in the concomitant but not individual presence of CT and IBMX. TPA alone in the absence of CT and IBMX caused a dose-dependent stimulation of tyrosinase activity. Maximal tyrosinase activity was obtained in the presence of 0.8 nM TPA, 20 ng/ml CT, and 10(-4) M IBMX. Unlike TPA, hrbFGF alone resulted in inhibition of tyrosinase activity. In the presence of hrbFGF, tyrosinase activity was potentiated by CT and IBMX, but not by CT alone. Neither TPA nor hrbFGF alone could increase intracellular cAMP levels. The effects of CT and IBMX on intracellular cAMP concentration were enhanced to a greater extent by TPA than by hrbFGF. Under our experimental conditions, in the presence of hrbFGF, CT but not IBMX resulted in a dose-dependent increase in cAMP concentration. Further studies on NHM will be aimed at determining the exact role of protein kinase C (PKC) in regulating proliferation and melanogenesis and the mechanism(s) activated by hrbFGF.  相似文献   

9.
10.
Zinc ion homeostasis plays an important role in human cutaneous biology where it is involved in epidermal differentiation and barrier function, inflammatory and antimicrobial regulation, and wound healing. Zinc-based compounds designed for topical delivery therefore represent an important class of cutaneous therapeutics. Zinc pyrithione (ZnPT) is an FDA-approved microbicidal agent used worldwide in over-the-counter topical antimicrobials, and has also been examined as an investigational therapeutic targeting psoriasis and UVB-induced epidermal hyperplasia. Recently, we have demonstrated that cultured primary human skin keratinocytes display an exquisite sensitivity to nanomolar ZnPT concentrations causing induction of heat shock response gene expression and poly(ADP-ribose) polymerase (PARP)-dependent cell death (Cell Stress Chaperones 15:309–322, 2010). Here we demonstrate that ZnPT causes rapid accumulation of intracellular zinc in primary keratinocytes as observed by quantitative fluorescence microscopy and inductively coupled plasma mass spectrometry (ICP-MS), and that PARP activation, energy crisis, and genomic impairment are all antagonized by zinc chelation. In epidermal reconstructs (EpiDerm™) exposed to topical ZnPT (0.1–2% in Vanicream™), ICP-MS demonstrated rapid zinc accumulation, and expression array analysis demonstrated upregulation of stress response genes encoding metallothionein-2A (MT2A), heat shock proteins (HSPA6, HSPA1A, HSPB5, HSPA1L, DNAJA1, HSPH1, HSPD1, HSPE1), antioxidants (SOD2, GSTM3, HMOX1), and the cell cycle inhibitor p21 (CDKN1A). IHC analysis of ZnPT-treated EpiDerm™ confirmed upregulation of Hsp70 and TUNEL-positivity. Taken together our data demonstrate that ZnPT impairs zinc ion homeostasis and upregulates stress response gene expression in primary keratinocytes and reconstructed human epidermis, activities that may underlie therapeutic and toxicological effects of this topical drug.  相似文献   

11.
12.
Quinones are potentially dangerous substances generated from quinols via the intermediates semiquinone and hydrogen peroxide. Low semiquinone radical concentrations are acting as radical scavengers while high concentrations produce reactive oxygen species and quinones, leading to oxidative stress, apoptosis, and/or DNA damage. Recently it was recognised that thioredoxin reductase/thioredoxin (TR/T) reduces both p- and o-quinones. In this report we examine additional reduction mechanisms for p- and o-quinones generated from hydroquinone (HQ) and coenzyme Q10 and by 17beta-estradiol by the common cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (6BH(4)). Our results confirmed that TR reduces the p-quinone 1,4 benzoquinone and coenzyme Q10-quinone back to HQ and coenzyme Q10-quinol, respectively, while 6BH(4) has the capacity to reduce coenzyme Q10-quinone and the o-quinone produced from 17beta-estradiol. 6BH(4) is present in the cytosol and in the nucleus of epidermal melanocytes and keratinocytes as well as melanoma cells and colocalises with TR/T. Therefore we conclude that both mechanisms are major players in the prevention of quinone-mediated oxidative stress and DNA damage.  相似文献   

13.
Ultraviolet (UV) irradiation causes photoageing through induction of matrix-degrading metalloproteinases (MMP), which are upregulated by activator protein-1 (AP-1) (Jun/Fos). The c-Jun kinase activity proves to be critically important in the regulation of AP-1 activity. Our previous studies showed that UV irradiation activates epidermal growth factor receptor (EGFR) and cytokine receptors leading to the activation of c-Jun kinase in cultured human skin keratinocytes in vitro and in human skin in vivo. However, the mechanism of UV-induced cell surface receptor activation and the crosstalk among growth factor receptor and cytokine receptors were not fully investigated. This study showed that UV (30 mJ/cm(2))-induced EGFR tyrosine phosphorylation in a manner similar to EGF (100 ng/ml), or IL-1beta (10 ng/ml) in cultured human keratinocytes. In all cases, EGFR tyrosine phosphorylation was completely inhibited by pretreatment of PD153035 (100 nM, 1 h). Also observed was that UV induced autophosphorylation of interleukin 1 receptor associated kinase (IRAK) in a manner analogous to IL-1beta or EGF. In both UV and EGF cases, the phosphorylation of IRAK was inhibited by pretreatment of PD153035. However, IL-1beta-induced IRAK activation was not affected by PD153035. In vitro kinase assay using GST-c-Jun as a substrate revealed that pretreatment of PD153035 completely inhibited UV- and IL-1-induced c-Jun kinase activity in cultured keratinocytes. Taken together, the above data suggest that EGFR plays dominant role in the crosstalk among growth factor receptor and cytokine receptors leading to the activation of c-Jun kinase upon UV irradiation, and that EGFR could be one of the targets for clinical and cosmetical prevention of UV-induced skin aging.  相似文献   

14.
Keratinocytes require abundant cholesterol for cutaneous permeability barrier function; hence, the regulation of cholesterol homeostasis is of great importance. ABCA1 is a membrane transporter responsible for cholesterol efflux and plays a pivotal role in regulating cellular cholesterol levels. We demonstrate that ABCA1 is expressed in cultured human keratinocytes (CHKs) and murine epidermis. Liver X receptor (LXR) activation markedly stimulates ABCA1 mRNA and protein levels in CHKs and mouse epidermis. In addition to LXR, activators of peroxisome proliferator-activated receptor (PPAR)alpha, PPARbeta/delta, and retinoid X receptor (RXR), but neither PPARgamma nor retinoic acid receptor, also increase ABCA1 expression in CHKs. Increases in cholesterol supply induced by LDL or mevalonate stimulate ABCA1 expression, whereas inhibiting cholesterol synthesis with statins or cholesterol sulfate decreases ABCA1 expression in CHKs. After acute permeability barrier disruption by either tape-stripping or acetone treatment, ABCA1 expression declines, and this attenuates cellular cholesterol efflux, making more cholesterol available for regeneration of the barrier. In addition, during fetal epidermal development, ABCA1 expression decreases at days 18-22 of gestation (term = 22 days), leaving more cholesterol available during the critical period of barrier formation. Together, our results show that ABCA1 is expressed in keratinocytes, where it is negatively regulated by a decrease in cellular cholesterol levels or altered permeability barrier requirements and positively regulated by activators of LXR, PPARs, and RXR or increases in cellular cholesterol levels.  相似文献   

15.
ABCG1, a member of the ATP binding cassette superfamily, facilitates the efflux of cholesterol from cells to HDL. In this study, we demonstrate that ABCG1 is expressed in cultured human keratinocytes and murine epidermis, and induced during keratinocyte differentiation, with increased levels in the outer epidermis. ABCG1 is regulated by liver X receptor (LXR) and peroxisome proliferator-activated receptor-δ (PPAR-δ) activators, cellular sterol levels, and acute barrier disruption. Both LXR and PPAR-δ activators markedly stimulate ABCG1 expression in a dose- and time-dependent fashion. PPAR-γ activators also increase ABCG1 expression, but to a lesser degree. In contrast, activators of PPAR-α, retinoic acid receptor, retinoid X receptor, and vitamin D receptor do not alter ABCG1 expression. In response to increased intracellular sterol levels, ABCG1 expression increases, whereas inhibition of cholesterol biosynthesis decreases ABCG1 expression. In vivo, ABCG1 is stimulated 3–6 h after acute barrier disruption by either tape stripping or acetone treatment, an increase that can be inhibited by occlusion, suggesting a potential role of ABCG1 in permeability barrier homeostasis. Although Abcg1-null mice display normal epidermal permeability barrier function and gross morphology, abnormal lamellar body (LB) contents and secretion leading to impaired lamellar bilayer formation could be demonstrated by electron microscopy, indicating a potential role of ABCG1 in normal LB formation and secretion.  相似文献   

16.
Among the substances that attracted the attention of oncologists in recent years are selenium-containing compounds, both inorganic and organic. Several epidemiological studies have shown an inverse correlation between selenium intake and cancer incidence. In the experiments reported here, we compared the effects of 2 inorganic selenium-containing salts that differed in the level of selenium oxidation, selenite IV and selenate VI. We tested the effects of these 2 compounds on cell survival and growth, cell cycle processing, cell morphology, cytoskeleton, and lipid peroxidation in 3 human skin cell types: normal keratinocytes, melanocytes, and human melanoma cell line HTB140. The different effects of selenite and selenate on the viability, growth, and morphology of normal cells and tumor cells are reported and provide a base for future research and treatment of some neoplastic diseases. The attention is paid to cell apoptosis induced by selenite and not by selenate, and the effects of tested substances on thioredoxin reductase system are postulated.  相似文献   

17.
Interleukin 1 (IL-1), present in high amounts in normal human skin without any sign of inflammation, suggests a complex mechanism by which its bioactivity is regulated. The specific receptor antagonist of IL-1 (IL-1ra) was analyzed in human skin, sweat and cultured keratinocytes. Extracts of both skin and cultured keratinocytes blocked the binding of [125I]IL-1 to its receptor whereas sweat did not. The inhibitory activity was cell-associated, was not secreted by cultured keratinocytes, and IL-1ra mRNA was identified in these cells. There was an inverse relationship between the level of IL-1ra and that of IL-1 alpha and beta since extracts of differentiating keratinocytes (DK) and higher IL-1ra levels and expressed more mRNA for IL-1ra than non-differentiated keratinocytes (NDK), whereas NDK contained 4 times more IL-1 alpha and beta proteins than DK. This association of cell differentiation with a shift in agonist/antagonist ratio might be related to important autocrine or paracrine functions of IL-1 in normal and inflamed human skin.  相似文献   

18.
Normal human melanocytes were amplified and cultured in a new defined culture medium without phorbol esters or cholera toxin. The medium decreased considerably the doubling time and increased the possible passage number. Melanocytes were co-seeded with normal human keratinocytes into 24 well culture dishes to screen potentially active modulators of melanogenesis. For the assay, the co-cultures were exposed to the compounds under investigation in the presence of 14C-thiouracil and 3H-leucine. Control cultures contain L-tyrosine or kojic acid, modulators which served as internal calibration standards. Changes in the rate of melanin synthesis were measured on the basis of 14C-thiouracil incorporation into newly synthesized melanin. A reduction or increase in 3H-leucine incorporation was taken as an indication of cytotoxicity or induction of proliferation, respectively. The NHK-NHM co-culture screening assay provides a useful tool to compare the activity of known modulators of melanogenesis and to perform structure-activity studies with newly identified modulators to improve their activity. The efficacy of particularly interesting new compounds was further evaluated on reconstructed pigmented epidermis after repeated topical application. The same model was used to assess the anti-pigmenting effect of sunscreens on UV-induced pigmentation. Integration of melanocytes from different ethnic origin resulted in pigmented epidermis reflecting different skin phenotypes, Caucasian, Asian and African.  相似文献   

19.
UV-induced DNA damage can lead to melanoma, the most dangerous form of skin cancer. Understanding the mechanisms employed by melanocytes to protect against UV is therefore a key issue. In melanocytes, catalase is the main enzyme responsible for degrading hydrogen peroxide and we have previously shown that that low basal levels of catalase activity are associated with the light phototype in in vitro and ex vivo models. Here we investigate the possible correlation between its activity and melanogenesis in primary cultures of human melanocytes. We show that while the total melanin concentration is directly correlated to the level of pigmentation, the more the degree of pigmentation increased, the lower the proportion of pheomelanin present. Moreover, in human melanocytes in vitro, catalase-specific mRNA, protein and enzymatic activity were all directly correlated with total cellular melanin content. We also observed that immediately after a peroxidative treatment, the increase in reactive oxygen species was inversely associated with pigmentation level. Darkly pigmented melanocytes therefore possess two protective strategies represented by melanins and catalase activity that are likely to act synergistically to counteract the deleterious effects of UV radiation. By contrast, lightly pigmented melanocytes possess lower levels of melanogenic and catalase activity and are therefore more susceptible to accumulate damage after UV exposition.  相似文献   

20.
Summary Human epidermal keratinocytes grown in culture and at different stages of differentiation are shown to be viably separated by elutriation. A specific fraction enriched in melanocytes was obtained. Elutriation of cells obtained fromin vitro cultured epithlium could prove useful in studies concerning the biochemistry and molecular markers of cells isolated from normal epithelium and from different pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号