首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymes of the Isoleucine-Valine Pathway in Acinetobacter   总被引:2,自引:2,他引:0       下载免费PDF全文
Regulation of four of the enzymes required for isoleucine and valine biosynthesis in Acinetobacter was studied. A three- to fourfold derepression of acetohydroxyacid synthetase was routinely observed in two different wild-type strains when grown in minimal medium relative to cells grown in minimal medium supplemented with leucine, valine, and isoleucine. A similar degree of synthetase derepression was observed in appropriately grown isoleucine or leucine auxotrophs. No significant derepression of threonine deaminase or transaminase B occurred in either wild-type or mutant cells grown under a variety of conditions. Three amino acid analogues were tested with wild-type cells; except for a two- to threefold derepression of dihydroxyacid dehydrase when high concentrations of aminobutyric acid were added to the medium, essentially the same results were obtained. Experiments showed that threonine deaminase is subject to feedback inhibition by isoleucine and that valine reverses this inhibition. Cooperative effects in threonine deaminase were demonstrated with crude extracts. The data indicate that the synthesis of isoleucine and valine in Acinetobacter is regulated by repression control of acetohydroxyacid synthetase and feedback inhibition of threonine deaminase and acetohydroxyacid synthetase.  相似文献   

2.
Cysteine has been shown to inhibit growth in Escherichia coli strains C6 and HfrH 72, but not M108A. Growth inhibition was overcome by inclusion of isoleucine, leucine, and valine in the medium. Isoleucine biosynthesis was apparently affected, since addition of this amino acid alone could alter the inhibitory effects of cysteine. Homocysteine, mercaptoethylamine, and mercaptoethanol inhibited growth to varying degrees in some strains, these effects also being prevented by addition of branched-chain amino acids. Cysteine, mercaptoethylamine, and homocysteine were inhibitors of threonine deaminase but not transaminase B, two enzymes of the ilvEDA operon. Cysteine inhibition of threonine deaminase was reversed by threonine, although the pattern of inhibition was mixed. These results suggest a relationship between the growth-inhibitory effects of cysteine and other sulfur compounds and the inhibition of isoleucine synthesis at the level of threonine deaminase.  相似文献   

3.
The inhibition of growth of the K-12 strain of Escherichia coli by glycyl-l-leucine observed originally by Simmonds and co-workers was investigated. The inhibition was reversed by isoleucine and those precursors of isoleucine beyond threonine in the biosynthetic pathway. Threonine reversed the inhibition poorly. With heavy cell suspensions, the inhibition was transient: the onset of growth followed the disappearance of the dipeptide from the medium and the appearance of glycine and leucine. Glycyl-leucine was shown to be an inhibitor of threonine deaminase (EC 4.2.1.16 l-threonine hydro-lyase [deaminating]). One kind of glycyl-leucine-resistant mutant had a threonine deaminase that was resistant to isoleucine and glycyl-leucine inhibition. The pattern of glycyl-leucine inhibition is compared with those of inhibition by isoleucine and by the weaker inhibitors leucine and valine.  相似文献   

4.
The heterotrophic growth of Thiobacillus acidophilus was inhibited by branched-chain amino acids; valine, isoleucine, and leucine. The inhibition by valine and leucine were partially reversed by isoleucine, and the inhibition by isoleucine was partially reversed by valine. Inhibitions by methionine or threonine were partially reversed when both amino acids were present in the growth medium. Inhibition by tyrosine was increased by phenylalanine or tryptophan. Cystine completely inhibited growth. Other amino acids tested produced little or no inhibition. Acetohydroxy acid synthetase (AHAS) activity was demonstrated in crude extracts of T. acidophilus. In crude extracts the optimum pH was 8.5 with a shift to 9.0 in the presence of valine. Valine was the only branched-chain amino acid which inhibited the AHAS activity. The presence of only one peak of AHAS activity upon centrifugation in linear glycerol density gradients demonstrated that the AHAS activity sediments as one component.  相似文献   

5.
In a strain of Escherichia coli K-12 lacking threonine deaminase, the enzyme converting alpha-ketoisovalerate and alpha-keto-beta-methylvalerate to valine and isoleucine, respectively, was multivalently repressed by valine, isoleucine, and leucine. This activity was due to transaminase B, specified by the ilvE structural gene.  相似文献   

6.
In Escherichia coli the sulfur-containing amino acid homocysteine (Hcy) is the last intermediate on the methionine biosynthetic pathway. Supplementation of a glucose-based minimal medium with Hcy at concentrations greater than 0.2 mM causes the growth of E. coli Frag1 to be inhibited. Supplementation of Hcy-treated cultures with combinations of branched-chain amino acids containing isoleucine or with isoleucine alone reversed the inhibitory effects of Hcy on growth. The last intermediate of the isoleucine biosynthetic pathway, alpha-keto-beta-methylvalerate, could also alleviate the growth inhibition caused by Hcy. Analysis of amino acid pools in Hcy-treated cells revealed that alanine, valine, and glutamate levels are depleted. Isoleucine could reverse the effects of Hcy on the cytoplasmic pools of valine and alanine. Supplementation of the culture medium with alanine gave partial relief from the inhibitory effects of Hcy. Enzyme assays revealed that the first step of the isoleucine biosynthetic pathway, catalyzed by threonine deaminase, was sensitive to inhibition by Hcy. The gene encoding threonine deaminase, ilvA, was found to be transcribed at higher levels in the presence of Hcy. Overexpression of the ilvA gene from a plasmid could overcome Hcy-mediated growth inhibition. Together, these data indicate that in E. coli Hcy toxicity is caused by a perturbation of branched-chain amino acid biosynthesis that is caused, at least in part, by the inhibition of threonine deaminase.  相似文献   

7.
The control of isoleucine and valine biosynthesis was examined in a hisU mutant of Salmonella typhimurium. It was found that the levels of expression of the ilvEDA operon and the ilvC gene were significantly reduced relative to an isogenic normal strain when grown in unsupplemented medium. In contrast, this hisU mutant exhibited only a slight reduction in total acetohydroxy acid synthase activity relative to that of the wild type. The hisU and hisU+ strains were examined to determine their derepressibility upon either leucine, valine or isoleucine limitation. Only during leucine limitation did the hisU strain exhibit impaired derepressibility relative to the hisU+ strain. In addition, repression control of threonine deaminase (the ilvA product of the ilvEDA operon) in this hisU mutant was refractory to exogenous supplementation with either leucine or valine. This response is in distinct contrast to that of the normal strain, in which the single addition of leucine or valine results in a significant reduction in the level of threonine deaminase.  相似文献   

8.
Growth inhibition by isoleucine hydroxamate in Serratia marcescens was significantly enhanced by adding valine plus leucine and by using glycerol as the carbon source. Isoleucine hydroxamate-resistant mutants were isolated under conditions in which growth inhibition was enhanced. One of the mutants, strain GIHVLr2179, lacked both feedback inhibition and repression of threonine deaminase. An alpha-aminobutyric acid-resistant mutant derived from strain GIHVLr2179, strain GIHVLAr2795, produced 12 mg of isoleucine per ml in the medium containing glucose and urea as carbon and nitrogen sources (a twofold increase over prior reports). This strain had increased activities of threonine deaminase, acetohydroxy acid synthase, aspartokinase, and homoserine dehydrogenase.  相似文献   

9.
Growth inhibition by isoleucine hydroxamate in Serratia marcescens was significantly enhanced by adding valine plus leucine and by using glycerol as the carbon source. Isoleucine hydroxamate-resistant mutants were isolated under conditions in which growth inhibition was enhanced. One of the mutants, strain GIHVLr2179, lacked both feedback inhibition and repression of threonine deaminase. An alpha-aminobutyric acid-resistant mutant derived from strain GIHVLr2179, strain GIHVLAr2795, produced 12 mg of isoleucine per ml in the medium containing glucose and urea as carbon and nitrogen sources (a twofold increase over prior reports). This strain had increased activities of threonine deaminase, acetohydroxy acid synthase, aspartokinase, and homoserine dehydrogenase.  相似文献   

10.
A 1-mg/ml amount of threonine (8.4 mM) inhibited growth and sporulation of Bacillus subtilis 168. Inhibition of sporulation was efficiently reversed by valine and less efficiently by pyruvate, arginine, glutamine, and isoleucine. Inhibition of vegetative growth was reversed by asparate and glutamate as well as by valine, arginine, or glutamine. Cells in minimal growth medium were inhibited only transiently by very high concentrations of threonine, whereas inhibition of sporulation was permanent. Addition of threonine prevented the normal increase in alkaline phosphatase and reduced the production of extracellular protease by about 50%, suggesting that threonine blocked the sporulation process relatively early. 2-Ketobutyrate was able to mimic the effect of threonine on sporulation. Sporulation in a strain selected for resistance to azaleucine was partially resistant. Seventy-five percent of the mutants selected for the ability to grow vegetatively in the presence of high threonine concentrations were found to be simultaneously isoleucine auxotrophs. In at least one of these mutants, the threonine resistance phenotpye could not be dissociated from the isoleucine requirement by transformation. This mutation was closely linked to a known ilvA mutation (recombination index, 0.16). This strain also had reduced intracellular threonine deaminase activity. These results suggest that threonine inhibits B. subtilis by causing valine starvation.  相似文献   

11.
Regulation of the biosynthesis of four of the five enzymes of the isoleucine-valine pathway was studied in Saccharomyces cerevisiae. A method is described for limiting the growth of a leucine auxotroph by using valine as a competitor for the permease. Limitation for isoleucine and valine was accomplished by the use of peptides containing these amino acids conjugated with glycine as nutritional supplements for auxotrophs. The enzymes were repressed on synthetic medium containing isoleucine, valine, and leucine, as well as on broth supplemented with these amino acids. Limitation for any of the three branched-chain amino acids led to derepression of the isoleucine-valine biosynthetic pathway. Maximal derepression ranged from 3-fold for threonine deaminase to approximately 10-fold for acetohydroxyacid synthase. (Two of the enzymes, acetohydroxyacid synthase and dihydroxyacid dehydrase, may be controlled by a mechanism different from that regulating threonine deaminase.) Possible molecular mechanisms for multivalent repression are discussed.  相似文献   

12.
a-Isopropylmalate synthase activity was demonstrated in the Sephadex G 25 gel filtrated crude extracts of one yeast and 43 bacterial strains belonging to 14 families. The enzyme was inhibited by leucine from all strains Bacteroides fragilis, Clostridia and several phototropic bacteria. The enzyme was inhibited by leucine from all strains investigated. In crude extracts of 17 species (8 genera) the leucine-mediated inhibition could be relieved by the addition of valine or isoleucine , but not by the addition of threonine or alanine. The enzymes from 11 species (7 genera) were inhibited by 1 mM valine and isoleucine, whereas the enzyme activity from 5 bacteria (4genera) were not so affected. These results suggest that valine and isoleucine are specifically involved in the regulation of leucine biosynthesis in several bacteria. The affect of valine and isoleucine on the IPM-synthase activity from mycobacteria and Corynebacterium autotrophicum lends support to the reclassification of Mycobacterium flavum 301 to C. autotrophicum. The antagonism between 5′,5′,5′-trifluoroleucine and amino acids and a-ketoisovalerate was a-isopropylmalate synthase in the presence or abssence of leucine and the reversal of the 5′,5′,5′-trifluoroleucine-mediated growth inhibition by these amino acids.  相似文献   

13.
Regulation of branched-chain amino acid transport in Escherichia coli.   总被引:16,自引:14,他引:2       下载免费PDF全文
The repression and derepression of leucine, isoleucine, and valine transport in Escherichia coli K-12 was examined by using strains auxotrophic for leucine, isoleucine, valine, and methionine. In experiments designed to limit each of these amino acids separately, we demonstrate that leucine limitation alone derepressed the leucine-binding protein, the high-affinity branched-chain amino acid transport system (LIV-I), and the membrane-bound, low-affinity system (LIV-II). This regulation did not seem to involve inactivation of transport components, but represented an increase in the differential rate of synthesis of transport components relative to total cellular proteins. The apparent regulation of transport by isoleucine, valine, and methionine reported elsewhere was shown to require an intact leucine, biosynthetic operon and to result from changes in the level of leucine biosynthetic enzymes. A functional leucyl-transfer ribonucleic acid synthetase was also required for repression of transport. Transport regulation was shown to be essentially independent of ilvA or its gene product, threonine deaminase. The central role of leucine or its derivatives in cellular metabolism in general is discussed.  相似文献   

14.
15.
D-cysteine, a powerful inhibitor of Escherichia coli growth, is decomposed in vitro into pyruvate, H2S, and NH3 by D-cysteine desulfhydrase. To assess the role of this reaction in the adaptation of the bacterium to growth on D-cysteine, the gene of the desulfhydrase was cloned. It corresponds to the open reading frame yedO at 43.03 min on the genetic map of E. coli. The amino acid sequence deduced from this gene is homologous to those of several 1-aminocyclopropane-carboxylate deaminases. However, the E. coli desulfhydrase does not use 1-aminocyclopropane-1-carboxylate as substrate. Various mutants in which the yedO gene was inactivated or overexpressed were constructed. They exhibited hypersensitivity or resistance, respectively, to the presence of d-cysteine in the culture medium. Growth protection against D-cysteine in minimal medium was conferred by the simultaneous addition of isoleucine, leucine, and valine. In agreement with this behavior, D-cysteine inhibited the activity of threonine deaminase, a key enzyme of the isoleucine, leucine, and valine pathway. Finally, in the presence of the intact yedO gene, E. coli growth was improved by addition of D-cysteine as the sole sulfur source. In agreement with a role of the desulfhydrase in sulfur metabolism, yedO expression was induced under conditions of sulfate limitation.  相似文献   

16.
l-Threonine deaminase (l-threonine dehydratase [deaminating], EC 4.2.2.16) has been shown to be involved in the regulation of three of the enzymes of isoleucine-valine biosynthesis in yeast. Mutations affecting the affinity of the enzyme for isoleucine also affected the repression of acetohydroxyacid synthase, dihydroxyacid dehydrase, and reductoisomerase. The data indicate that isoleucine must be bound for effective repression of these enzymes to take place. In a strain with a nonsense mutation midway in liv 1, the gene for threonine deaminase, starvation for isoleucine or valine did not lead to derepression of the three enzymes; starvation for leucine did. The effect of the nonsense mutation is recessive; it is tentatively concluded, therefore, that intact threonine deaminase is required for derepression by two of the effectors for multivalent repression, but not by the third. A model is presented which proposes that a regulatory species of leu tRNA(leu) is the key intermediate for repression and that threonine deaminase is a positive element, regulating the available pool of charged leu tRNA by binding it.  相似文献   

17.
Lee YT  Duggleby RG 《Biochemistry》2001,40(23):6836-6844
Acetohydroxyacid synthase (EC 4.1.3.18; AHAS) catalyzes the initial step in the formation of the branched-chain amino acids. The enzyme from most bacteria is composed of a catalytic subunit, and a smaller regulatory subunit that is required for full activity and for sensitivity to feedback regulation by valine. A similar arrangement was demonstrated recently for yeast AHAS, and a putative regulatory subunit of tobacco AHAS has also been reported. In this latter case, the enzyme reconstituted from its purified subunits remained insensitive to feedback inhibition, unlike the enzyme extracted from native plant sources. Here we have cloned, expressed in Escherichia coli, and purified the AHAS regulatory subunit of Arabidopsis thaliana. Combining the protein with the purified A. thaliana catalytic subunit results in an activity stimulation that is sensitive to inhibition by valine, leucine, and isoleucine. Moreover, there is a strong synergy between the effects of leucine and valine, which closely mimics the properties of the native enzyme. The regulatory subunit contains a sequence repeat of approximately 180 residues, and we suggest that one repeat binds leucine while the second binds valine or isoleucine. This proposal is supported by reconstitution studies of the individual repeats, which were also cloned, expressed, and purified. The structure and properties of the regulatory subunit are reminiscent of the regulatory domain of threonine deaminase (EC 4.2.1.16), and it is suggested that the two proteins are evolutionarily related.  相似文献   

18.
19.
Isoleucine-deficient mutants of Salmonella typhimurium were isolated. Three groups of mutants can be discerned by their nutritional requirements and enzyme patterns. (i) Mutants which grow with isoleucine alone are devoid of biosynthetic threonine deaminase (TD). (ii) Mutants growing with isoleucine and valine are devoid of transaminase B. (iii) Mutants growing with either isoleucine or threonine have normal levels of TD. However, the sensitivity of this enzyme to feedback inhibition by isoleucine is greatly enhanced. The inhibitory effect of isoleucine can be counterbalanced by high concentrations of threonine. These results indicate that the production of isoleucine in the mutants is restricted to a low level not sufficient to support the growth of the cells. This hypothesis is confirmed by studies with revertants of an isoleucine-threonine mutant. In nine revertants, wild-type properties of TD have been restored. In four revertants, the hypersensitivity of TD is unchanged, but the strains produce a greatly enhanced quantity of threonine, which is excreted into the culture medium. It follows, that hypersensitivity of TD to inhibition by isoleucine is the cause of the nutritional requirement of isoleucine-threonine mutants.  相似文献   

20.
Uptake of isoleucine, leucine, and valine in Escherichia coli K-12 is due to several transport processes for which kinetic evidence has been reported elsewhere. A very-high-affinity transport process, a high-affinity transport process, and three different low-affinity transport processes were described. In this paper the existence of these transport processes is confirmed by the isolation and preliminary characterization of mutants altered in one or more of them. The very-high-affinity transport process is missing either in strains carrying the brnR6(am) mutation or in strains carrying the brn-8 mutation. This appears to be a pleiotropic effect since other transport systems are also missing. Mutant analysis shows that more than one transport system with high affinity is present. One of them, high-affinity 1, which needs the activity of a protein produced by the brnQ gene, transports isoleucine, leucine, and valine and is unaffected by threonine. The other, high-affinity 2, which needs the activity of a protein produced by the brnS gene, transports isoleucine, leucine, and valine; this uptake is inhibited by threonine which probably is a substrate. Another protein, produced by the brnR gene, is required for uptake through both high-affinity 1 and high-affinity 2 transport systems. The two systems therefore appear to work in parallel, brnR being a branching point. The brnQ gene is located close to phoA at 9.5 min on the chromosome of E. coli, the brnR gene is located close to lac at 9.0 min, and the brnS gene is close to pdxA at 1 min. A mutant lacking the low-affinity transport system for isoleucine was isolated from a strain in which the high-affinity system was missing because of a brnR mutation. This strain also required isoleucine for growth because of an ilvA mutation. The mutant lacking the low-affinity transport system was unable to grow on isoleucine but could grow on glycylisoleucine. This mutant had lost the low-affinity transport for isoleucine, whereas those for leucine and valine were unaffected. A pleiotropic consequence of this mutation (brn-8) was a complete absence of the very-high-affinity transport system due either to the alteration of a common gene product or to any kind of secondary interference which inhibits it. Mutants altered in isoleucine-leucine-valine transport were isolated by taking advantage of the inhibition that valine exerts on the K-12 strain of E. coli. Mutants resistant both to valine inhibition (Val(r)) and to glycylvaline inhibition are regulatory mutants. Val(r) mutants that are sensitive to glycylvaline inhibition are transport mutants. When the very-high-affinity transport process is repressed (for example by methionine) the frequency of transport mutants among Val(r) mutants is higher, and it is even higher if the high-affinity transport process is partially inhibited by leucine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号