首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stromatoporoids were a subphylum of the Porifera whose soft parts can be reconstructed by comparisons with the living sclerosponges Merlia and Astrosclera . The living tissue was confined to the upper surface and penetrated only short distances into the coenosteum. Astrorhizae are traces of an excurrent water canal system that interfered with the secretion of the skeleton in some stromatoporoids but was entirely above the hard tissue in others. The stromatoporoid skeleton was composed of trabecular or spherulitic aragonite. Calcitization and dissolution of the aragonite proceeding from the centers of calcification outward account for the microstructures (fibrous, compact, tripartite, ordinicellular, cellular, melanospheric) commonly observed in the calcite skeletons of fossil stromatoporoids. Reconstructions showing the proposed relationship of the soft tissue to the hard tissue of Labechia, Stictostroma, Actinostroma and Stromatopora are presented.  相似文献   

2.
This paper records the first example of a demosponge spicule framework in a single specimen of a Devonian stromatoporoid from the Frasnian of southern Belgium. The small sample (2.5 × 2 cm) is a component in a brecciated carbonate from a carbonate mound in La Boverie Quarry 30 km east of Dinant. Because of the small size of the sample, generic identification is not confirmed, but the stromatoporoid basal skeleton is similar to the genus Stromatopora. The spicules are arranged in the calcified skeleton, but not in the gallery space, and are recrystallized as multi‐crystalline calcite. The spicules fall into two size ranges: 10–20 μm diameter and 500–2000 μm long for the large ones and between 5–15 μm diameter and 50–100 μm length for the small ones. In tangential section, the spicules are circular, they have a simple structure, and no axial canal has been preserved. The large spicules are always monaxons, straight or slightly curved styles or strongyles. The spicules most closely resemble halichondrid/axinellid demosponge spicules and are important rare evidence of the existence of spicules in Palaeozoic stromatoporoids, reinforcing the interpretation that stromatoporoids were sponges. The basal skeleton may have had an aragonitic spherulitic mineralogy. Furthermore, the spicules indicate that this stromatoporoid sample is a demosponge.  相似文献   

3.
While our understanding of the developmental biology of the skeleton, like that of virtually every other subject in biology, has been transformed by recent advances in human and mouse genetics, we still know very little, in molecular and genetic terms, about skeletal physiology. Thus, among the many questions that are largely unexplained are the following: why is osteoporosis mainly a women's disease? How is bone mass maintained nearly constant between the end of puberty and the arrest of gonadal functions? Molecular genetics has emerged as a powerful tool to study previously unexplored aspects of the physiology of the skeleton. Among mammals, mice are the most promising animals for this experimental work. This has been previously demonstrated e.g. through the tremendous impact of the different osteopetrotic models on our molecular understanding of osteoclastic bone resorption. Until recently the only way of studying bone loss situations and osteoporosis in mice was by using ovariectomy with all its limitations. Today, however, we have access to more sophisticated osteoporotic mouse-models from four different origins: Transgenic mice (HSV-TK), knock-out mice (OPG), inbred-strains (SAMP6), and through physiological modulation (icv application). These new models have already taught us several important lessons. The first is, that bone remodeling is more than just an autocrine/paracrine process. Multiple experimental evidence has demonstrated that the latter regulation exists, but genetics prove that there is no functional cross-control between resorption and formation. The second lesson is, that remodeling is, at least in part, subject to central regulation. Thus, osteoporosis is partly a central or hypothalamic disease. However, the most dramatic change and the most important advantage we feel is, that today we have models to test a new hypothesis regarding the etiology of osteoporosis before it turns to dogma. Taken together, mouse-studies may lead to a shift in our physiological understanding of skeleton biology and to the emergence of novel paradigms. These, in turn, should help us to devise new treatments for degenerative diseases of the skeleton such as osteoporosis and its associated clinical problems.  相似文献   

4.
In previous papers (Theraulaz et al., 1995; Bonabeau et al., 1996) we suggested, following Hogeweg and Hesper (1983, 1985), that the formation of dominance orders in animal societies could result from a self-organizing process involving a double reinforcement mechanism: winners reinforce their probability of winning and losers reinforce their probability of losing. This assumption, and subsequent models relying on it, were based on empirical data on primitively eusocial wasps (Polistes dominulus). By reanalysing some of the experimental data that was previously thought to be irrelevant, we show that it is impossible to distinguish this assumption from a competing assumption based on preexisting differences among individuals. We propose experiments to help discriminate between the two assumptions and their corresponding models—the self-organization model and the correlational model. We urge other researchers to be cautious when interpreting their dominance data with the ’self-organization mindset’; in particular, ‘winner and loser effects’, which are often considered to give support to the self-organization assumption, are equally consistent with the correlational assumption.  相似文献   

5.
Eight specimens of Devonian stromatoporoids with well visible latilaminae arrangement exposed on polished slabs were subjected to a detailed morphometric analysis. The studies have revealed that the so far used stromatoporoid parameterization method leaves a broad field of uncertainty concerning the exact definitions of particular parameters. The possible ways of making the measurements and the propositions of more precise definitions of the parameters used in the method, both of the growth form above the sea bottom and of the whole skeleton are therefore presented in this paper. The Bm - basal length of the skeleton, has been defined as a straight line joining the two ends of the basal surface, which have been pointed basing on the stromatoporoid's overall shape, latilaminae arrangement and angular relation to the main growth axis position in ontogenetical development, length. The Bn - basal length of the growth form above the sea bottom, is to be measured along a straight line joining the ends of the last visible latilamina. From among a number of possible definitions of the Vm - vertical height of the whole skeleton, a straight line joining the initial growth nucleus and the highest point on the specimen's surface above the Bm line has been selected. The Vn - vertical height of the growth form above the sea bottom is defined as the height of the point on the stromatoporoid surface highest above the Bn measured perpendicularly to it. A parameter of burial ratio, BR=(Vm-Vn)/Vm, is introduced.  相似文献   

6.
The morphological variation of stromatoporoids, which are solitary organisms, is partitioned into its presumably genetic and environmental components. Potentially heritable, environmentally mediated and residual components of morphological variability were estimated in a test set containing Devonian stromatoporoids of the genus Gerronostromaria from southern Poland using analysis of variance. The taxonomic importance of traditional morphometric features is limited, because they are dominated by the intra‐skeletal component of variance. Conventional metrics were therefore replaced by stereological and textural quantities. Both stereological and textural features are dominated by the inter‐skeletal and inter‐locality components of variation and thus may be valuable in taxonomic and environmental studies of stromatoporoids. Statistical analyses of these characters (principal component analysis and cluster analysis) were performed. Of 13 characters considered most useful in taxonomic studies, only five have been used previously in conventional species definitions.  相似文献   

7.
8.
9.
Anthony J. Baines 《Protoplasma》2010,244(1-4):99-131
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins—spectrin, ankyrin, 4.1 and adducin—which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin–ankyrin–4.1–adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin–ankyrin–4.1–adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.  相似文献   

10.
11.
The origins of fibrodysplasia ossificans progressiva (FOP) in human history are unknown but the condition has been well described since Freke's account in 1740. Important contributions by physicians and scientists in the past two and a half centuries have converged on the remarkable skeleton of Harry Eastlack at The Mutter Museum of The College of Physicians in Philadelphia.  相似文献   

12.
One important element that defines cell shape is the membrane skeleton. This filamentous network is closely apposed to the cytoplasmic face of the plasma membrane where it gives mechanical support to the membrane, provides specific attachment sites for cytoskeletal components and helps to organize some integral membrane proteins into domains. The membrane skeleton of erythrocytes has been studied extensively by biochemical and ultrastructural methods, but similar structures in other cell types are just beginning to be defined. In this review, David Pumplin and Robert Bloch draw attention to these nonerythroid skeletons and compare and contrast them with the erythrocyte model.  相似文献   

13.
The spectrin membrane skeleton: emerging concepts   总被引:12,自引:0,他引:12  
  相似文献   

14.
15.
16.
While the mechanistic links between animal movement and population dynamics are ecologically obvious, it is much less clear when knowledge of animal movement is a prerequisite for understanding and predicting population dynamics. GPS and other technologies enable detailed tracking of animal location concurrently with acquisition of landscape data and information on individual physiology. These tools can be used to refine our understanding of the mechanistic links between behaviour and individual condition through ‘spatially informed’ movement models where time allocation to different behaviours affects individual survival and reproduction. For some species, socially informed models that address the movements and average fitness of differently sized groups and how they are affected by fission–fusion processes at relevant temporal scales are required. Furthermore, as most animals revisit some places and avoid others based on their previous experiences, we foresee the incorporation of long-term memory and intention in movement models. The way animals move has important consequences for the degree of mixing that we expect to find both within a population and between individuals of different species. The mixing rate dictates the level of detail required by models to capture the influence of heterogeneity and the dynamics of intra- and interspecific interaction.  相似文献   

17.
18.
骨骼的内分泌功能   总被引:1,自引:0,他引:1  
既往认为骨骼是支持机体基本结构和参与运动及钙磷代谢的主要器官。近年发现组成骨骼的成骨细胞和破骨细胞能合成和分泌多种骨调节蛋白、生长因子、脂肪因子、炎症因子和心血管活性肽等多种生物活性物质,以旁/自分泌方式调节骨骼系统功能,并能通过血液循环远距分泌的方式,调节机体能量代谢、炎症反应和内分泌稳态等。  相似文献   

19.
20.
Bianchi  Thomas S. 《Biogeochemistry》2021,154(2):141-181
Biogeochemistry - The evolution of biogeochemistry, retraces the important historical steps in part, covered by Gorham (Biogeochemistry 13:199–239, 1991) in the 18–19th...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号