首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Baker’s yeast suspensions having bacterial populations of 106 and 108 CFU/ml were subjected to autolysis processes designed to obtain yeast extracts (YE). The bacterial contaminants added to the yeast cell suspensions were produced with spent broths obtained from a commercial yeast production plant and contained 59% cocci (Leuconostoc, Aerococcus, Lactococcus) as well as 41% bacilli (Bacillus). Autolyses were conducted at four different pH levels (4.0, 5.5, 7.0, and 8.5) and with two autolysis-promoting agents (ethyl acetate and chitosan). Processing parameters were more important than the initial bacterial population in the development of contaminating bacteria during manufacture of YE. Drops in the viable bacterial population after a 24-h autolysis were observed when pH was adjusted to 4.0 or when ethyl acetate was added. A significant interaction was found between the effects of pH and autolysis promoters on the bacterial population in YE, indicating that the activity of ethyl acetate, as opposed to that of chitosan, was not influenced by pH.  相似文献   

2.
Yeast extracts (YE) were produced with the addition of proteases or glucanases during bakers' yeast (Saccharomyces cerevisiae) autolysis. Chemical composition, physical properties, and biological value of the YE were examined. Proteases had the highest impact on the turbidity and filterability of YE. All 11 proteases and two glucanases increased YE yields (% yeast solids solubilized) obtained from heated (80 degrees C/15 min) bakers' yeast creams (BYC). However, when proteases were added to native (unheated) BYC during autolysis, few increased YE yields, with papain being the most effective. The increased yields were generally related to increased levels of total nitrogen (TN) and alpha-amino nitrogen (alpha-AN) in the YE. Media were supplemented with the various yeast extracts, and the highest growth rates (mumax) and biomass values (ODmax) of Lactobacillus acidophilus were noted. The best growth was obtained with YE produced with native BYC treated with a fungal protease, and results of this study show that some enzymes could be used to produce improved YE for microbiological media.  相似文献   

3.
The autolysis of yeast cells has practical implications in the production of fermented foods and beverages and flavourants for food processing. Protein and RNA degradation during yeast autolysis are well described but the fate of DNA is unclear. Yeast cells (Saccharomyces cerevisiae) were autolysed by incubating suspensions at 30–60°C (pH 7.0), and at pH 4.0–7.0 (40°C) for 10–14 days. Up to 55% of total DNA was degraded, with consequent leakage into the extracellular environment of mainly 3′- and 5′-deoxyribonucleotides, and lesser amounts of polynucleotides. The rate and extent of DNA degradation, composition of the DNA degradation products and DNase activity were affected by temperature and pH. The highest amount of DNA degradation occurred at 40°C and pH 7.0, where the highest DNase activity was recorded. DNase activity was lowest at 60°C and pH 4.0, where the proportion of polynucleotides in the degradation products was higher. Electronic Publication  相似文献   

4.
Autolytic degradation of yeast RNA occurs in many foods and beverages and can impact on the sensory quality of the product, but the resulting complex mixture of nucleotides, nucleosides and nucleobases has not been properly characterised. In this study, yeast autolysis was induced by incubating cell suspensions of Saccharomyces cerevisiae at 30–60 °C (pH 7.0), and at pH 4.0–7.0 (40 °C) for 10–14 days, and the RNA degradation products formed during the process were determined by reversed-phase HPLC. Up to 95% of cell RNA was degraded, with consequent leakage into the extracellular environment of mainly 3′-, 5′- and 2′-ribonucleotides, and lesser amounts of polynucleotides, ribonucleosides and nucleobases. The rate of RNA degradation and the composition of the breakdown products varied with temperature and pH. RNA degradation was fastest at 50 °C (pH 7.0). Autolysis at lower temperatures (30 °C and 40 °C) and at pH 5.0 and 6.0 favoured the formation of 3′-nucleotides, whereas autolysis at 40 °C and 50 °C (pH 7.0) favoured 5′- and 2′-nucleotides. The best conditions for the formation of the two flavour-enhancing nucleotides, 5′-AMP and 5′-GMP, were 50 °C (pH 7.0) and pH 4.0 (40 °C), respectively.  相似文献   

5.
The effect of diffusible acids on potassium ion uptake by yeast   总被引:1,自引:1,他引:0       下载免费PDF全文
1. When yeast oxidizes ethanol at different pH values the uptake of K(+) corresponds closely to the amount of acetate accumulated at each pH value. 2. The addition of semicarbazide to the suspension buffered at pH4.75 inhibited both the K(+) uptake and the acetate accumulation by about 50%. 3. The addition of either acetate or propionate to the suspensions markedly increased the K(+) uptake. 4. The addition of acetate to the suspensions lowered the intracellular pH of the yeast from a resting value of pH5.80 to 5.56. 5. The ratio of the initial rate of K(+) uptake to O(2) consumption was 0.77. This ratio was increased to 1.77 in the presence of 10mmol of propionate/l.  相似文献   

6.
Breeding of high ergosterol-producing yeast strains   总被引:8,自引:0,他引:8  
High ergosterol-producing yeast strains YEH-28 and YEH-56 were constructed by hybridization of two haploids with opposite mating types from different species. The fermentation conditions of hybrid strain YEH-56 were studied. The highest level of ergosterol was obtained in 30 h at 28°C and 200 rpm, when 60 ml of culture in 250-ml shake flasks was grown in fermentation medium that consisted of (per liter): 100 g glucose; 10 g peptone and 10 g yeast extract. The initial pH was adjusted to 6.0. The optimal inoculum volume was 10% (v/v). Under optimal conditions, the yield of ergosterol of YEH-28 strain is 1.96 and 1.56 times that of the parental strains YE39 and YE244, whereas that of YEH-56 is 1.98 and 1.57 times that of the parental strains YE39 and YE244, respectively. Analysis of genetic stability showed that hybrid strains YEH-28 and YEH-56 are stable genetically. Journal of Industrial Microbiology & Biotechnology (2000) 25, 39–44. Received 13 November 1999/ Accepted in revised form 09 March 2000  相似文献   

7.
AIM: To determine whether Megasphaera elsdenii YE34 (lactic acid degrader) and Butyrivibrio fibrisolvens YE44 (alternative starch utilizer to Streptococcus bovis) establish viable populations in the rumen of beef cattle rapidly changed from a forage-based to a grain-based diet. METHODS AND RESULTS: Five steers were inoculated with the two bacterial strains (YE34 and YE44) and five served as uninoculated controls. With the exception of one animal in the control group, which developed acidosis, all steers rapidly adapted to the grain-based diet without signs of acidosis (pH decline and accumulation of lactic acid). Bacterial populations of S. bovis, B. fibrisolvens and M. elsdenii were enumerated using real-time Taq nuclease assays. Populations of S. bovis remained constant (except in the acidotic animal) at ca 10(7) cell equivalents (CE) ml-1 throughout the study. Megasphaera elsdenii YE34, was not detectable in animals without grain in the diet, but immediately established in inoculated animals, at 10(6) CE ml-1, and increased 100-fold in the first 4 days following inoculation. Butyrivibrio fibrisolvens, initially present at 10(8) CE ml-1, declined rapidly with the introduction of grain into the diet and was not detectable 8 days after grain introduction. CONCLUSION: Megasphaera elsdenii rapidly establishes a lactic acid-utilizing bacterial population in the rumen of grain-fed cattle 7-10 days earlier than in uninoculated cattle. SIGNIFICANCE AND IMPACT OF THE STUDY: The study has demonstrated that rumen bacterial populations, and in particular the establishment of bacteria inoculated into the rumen for probiotic use, can be monitored by real-time PCR.  相似文献   

8.
Sucrose, a non-pectic carbon source, with yeast extract (YE) added was able to support the production of pectin lyase (PL) by Penicillium griseoroseum Dierckx. However, in the absence of YE, the fungus did not produce PL but grew and caused a marked reduction in culture medium pH. Furthermore, in the absence of YE, only a culture medium with a high buffering capacity permitted the production of PL in the presence of pectin. On the other hand, in the presence of 0.06% YE and of 0.1% pectin, the fungus produced maximum growth and specific PL activity during a 48-h period of culture, with a small variation in medium pH. In the absence of sucrose, YE concentrations from 0 to 0.6% did not support enzyme production, indicating synergism between sucrose and YE for production of the enzyme.  相似文献   

9.
The energized membrane and cellular autolysis in Bacillus subtilis   总被引:34,自引:0,他引:34  
L K Jolliffe  R J Doyle  U N Streips 《Cell》1981,25(3):753-763
Lysis of exponential cultures of B. subtilis follows the addition of reagents that dissipate either the electrical or pH gradients of cellular membranes. Stationary-phase cells or cultures that have been inhibited in division by macromolecular-synthesis inhibitors also lyse when uncoupling agents or ionophores are added to the growth medium. Autolysis occurs after brief starvation for a carbon source. Protoplasts are unaffected by azide or other lysis-inducing agents. Electron-donating agents, such as phenazine methosulfate and ascorbate, are effective in retarding autolysis. The addition of an oxidizable carbon source to starved and lysing cultures prevents their autolysis. These results suggest that cellular lysis in B. subtilis and energized membrane are tightly coupled. The fluorescence intensity and the wavelength of maximal fluorescence of 8-anilino-1-naphthalene sulfonic acid, when added to bacterial suspensions, appear to be qualitatively related to the rate of cell lysis. Analyses show that ATP limitations are probably not involved in the elicitation of lysis by ionophores, uncoupling agents or starvation. Measurements of protonmotive forces in the lysis-prone cells suggest that a threshold force of more than 85 mV may be required to maintain cellular integrity. Lipoteichoic acids, polyelectrolytes such as dextran sulfate or phospholipids do not modify the rate of cellular lysis when added to suspensions containing azide or other reagents that eliminate transmembrane protonmotive forces. We interpret the results to suggest that the in vivo control of autolysin activity in B. subtilis is related to the energized membrane  相似文献   

10.
Nineteen bacterial isolates were grown in shaken cultures in media containing chitin as carbon source and different additional nitrogen sources such as yeast nitrogen base (YNB), yeast extract (YE), corn steep liquor (CSL) and ammonium sulfate. Strain BM17 showed the highest activity (200 U/l) in medium containing Chitin (1%) and YNB (0.5%). Molecular analysis of the 16S rRNA gene showed that strain BM17 belongs to the species Paenibacillus pabuli (99.72% homology). The enzyme activity started after 12-24 h; exponential enzyme production was recorded from the 24th h and lasted till the 96th h of incubation when activity peaked to decrease thereafter. Medium optimisation was carried out by Response Surface Methodology (RSM) considering the effects of chitin, corn steep liquor and yeast extract. BM17 chitinolytic activity was induced by chitin but the increase of its concentration did not have significant effects on the enzyme activity. By contrast, the nitrogen source, particularly YE, strongly affected the enzyme production.  相似文献   

11.
All four fungi studied attained approximately the same dry weight of mycelium in starch-yeast extract medium. Only about one-fourth the amount of mycelia was produced in yeast extract alone (starch omitted). However, the initial growth rate ofH. grisea var.thermoidea was greater than the other three fungi. Extracellular amylase was produced by all four fungi, butH. lanuginosa produced 8 to 12 times as much as the other three. Maximum extracellular amylase was found before autolysis with these three fungi, but after autolysis withH. lanuginosa. Extracellular amylase was detected in YE medium (lacking starch), but in very low amounts (approximately one-eighth the amount observed as when starch was present). Increasing the amount of starch in the medium increased extracellular amylase. However, when the starch concentration was kept constant, increasing the concentration of yeast extract had no effect on extracellular amylase.Contribution No. 59 from the Botany Section, The Department of Biology. Portion of a thesis presented by the senior author in partial fulfillment for the M.S. degree.  相似文献   

12.
(1 3)--D-Glucans have received much attention with respect to their biological functions. A novel method to extract (1 3)--D-glucan from Saccharomyces cerevisiae cell wall is proposed in present work, which is based on the combination of induced autolysis and subsequent oxidation of the autolysed cell by sodium hypochlorite to remove undesirable substances. Influences of temperature, pH value and organic solvent on S. cerevisiae FL 1 autolysis were investigated. Results indicated that each factor had its significant effect on induced autolysis and the optimal conditions were 52 °C, pH 5.5 and 1.5% (v/v) ethyl acetate. The kinetic behaviour of the yeast autolytic process under the optimized conditions was further studied. After 36 h of autolysis, 42.0% (w/w) cellular substances were released while the cell wall nearly remained intact. Finally, an ideal glucan yield as high as 22.9% (w/w) was obtained when S. cerevisiae FL 1 was treated by the novel method.  相似文献   

13.
P S Hoffman  L Pine    S Bell 《Applied microbiology》1983,45(3):784-791
The difficulties associated with the growth of Legionella species in common laboratory media may be due to the sensitivity of these organisms to low levels of hydrogen peroxide and superoxide radicals. Exposure of yeast extract (YE) broth to fluorescent light generated superoxide radicals (3 microM/h) and hydrogen peroxide (16 microM/h). Autoclaved YE medium was more prone to photochemical oxidation than YE medium sterilized by filtration. Activated charcoals and, to a lesser extent, graphite, but not starch, prevented photochemical oxidation of YE medium, decomposed hydrogen peroxide and superoxide radicals, and prevented light-accelerated autooxidation of cysteine. Also, suspensions of charcoal in phosphate buffer and in charcoal yeast extract medium readily decomposed exogenous peroxide (17 and 23 nmol/ml per min, respectively). Combinations of bovine superoxide dismutase and catalase also decreased the rate of photooxidation of YE medium. Medium protected from light did not accumulate appreciable levels of hydrogen peroxide, and autoclaved YE medium protected from light supported good growth of Legionella micdadei. Various species of Legionella (10(4) cells per ml) exhibited sensitivity to relatively low levels of hydrogen peroxide (26.5 microM) in challenge experiments. The level of hydrogen peroxide that accumulated in YE medium over a period of several hours (greater than 50 microM) was in excess of the level tolerated by Legionella pneumophila, which contained no measurable catalase activity. Strains of L. micdadei, Legionella dumoffi, and Legionella bozmanii contained this enzyme, but the presence of catalase did not appear to confer appreciable tolerance to exogenously generated hydrogen peroxide.  相似文献   

14.
The difficulties associated with the growth of Legionella species in common laboratory media may be due to the sensitivity of these organisms to low levels of hydrogen peroxide and superoxide radicals. Exposure of yeast extract (YE) broth to fluorescent light generated superoxide radicals (3 microM/h) and hydrogen peroxide (16 microM/h). Autoclaved YE medium was more prone to photochemical oxidation than YE medium sterilized by filtration. Activated charcoals and, to a lesser extent, graphite, but not starch, prevented photochemical oxidation of YE medium, decomposed hydrogen peroxide and superoxide radicals, and prevented light-accelerated autooxidation of cysteine. Also, suspensions of charcoal in phosphate buffer and in charcoal yeast extract medium readily decomposed exogenous peroxide (17 and 23 nmol/ml per min, respectively). Combinations of bovine superoxide dismutase and catalase also decreased the rate of photooxidation of YE medium. Medium protected from light did not accumulate appreciable levels of hydrogen peroxide, and autoclaved YE medium protected from light supported good growth of Legionella micdadei. Various species of Legionella (10(4) cells per ml) exhibited sensitivity to relatively low levels of hydrogen peroxide (26.5 microM) in challenge experiments. The level of hydrogen peroxide that accumulated in YE medium over a period of several hours (greater than 50 microM) was in excess of the level tolerated by Legionella pneumophila, which contained no measurable catalase activity. Strains of L. micdadei, Legionella dumoffi, and Legionella bozmanii contained this enzyme, but the presence of catalase did not appear to confer appreciable tolerance to exogenously generated hydrogen peroxide.  相似文献   

15.
16.
Summary Known methods for the acceleration of yeast autolysis have been investigated and new methods have been developed. It is shown that autolysis can be induced by plasmolysis with a number of solvents. The efficiency of this treatment is dependent on the nature of the solvent, its concentration and the duration of the treatment. Plasmolysis generally does not cause release of molecules of high molecular weight (MW) such as enzymes. However, addition of water initiates autolysis and the enzyme carboxypeptidase Y (MW 64000), for example, is released. The rate of this process is very dependent on pH; at the optimal pH (around 8.0) essentially complete autolysis is achieved within 20 h using the best solvents. Control of pH through the process is required. Straight-chain alcohols of medium chain length, i.e. C6–C9 appear to function efficiently in amounts of only 1.2 ml/100 g yeast. In amounts of 2.5–10 ml solvent/100 g yeast trichloroethane, chloroform and in particular ether also provide efficient plasmolysis. Furthermore, it was shown that treatment of an aqueous suspension of yeast cells with a variety of non-ionic as well as ionic detergents caused autolysis. The influence of pH corresponds to that observed with organic solvents, i.e. a pH around 8.0 is optimal. This autolysis process was most efficient when the compressed yeast had been initially plasmolysed by treatment with sodium chloride followed by addition of water. The inexpensive detergents Triton X-100 and N-lauroylsarcosine appeared to be among the most efficient. The methods described in this paper are inexpensive and can be employed on a large scale. In addition, cell debris is easily removed, which is very important for subsequent down-stream processing. In the alternative method using physical breakage by homogenization this step is highly problematic. Offprint requests to: K. Breddam  相似文献   

17.
A medium containing cornsteep liquor (CSL) as a replacement for yeast extract (YE) enhanced the sporulation of Bacillus sphaericus 2362. Fed-batch culture with combinations of YE and CSL together with acetate as carbon source resulted in a cell mass of 13.0 g/L and a high spore count of 16.4×109/mL. This compared to an acetate, YE based medium which produced a similar cell concentration but only 4×109 spores/mL. Western blot analysis indicated significant toxin production in the former case.  相似文献   

18.
During the fermentation of sugars to ethanol relatively high levels of an undesirable coproduct, ethyl acetate, are also produced. With ethanologenic Escherichia coli strain KO11 as the biocatalyst, the level of ethyl acetate in beer containing 4.8% ethanol was 192 mg liter(-1). Although the E. coli genome encodes several proteins with esterase activity, neither wild-type strains nor KO11 contained significant ethyl acetate esterase activity. A simple method was developed to rapidly screen bacterial colonies for the presence of esterases which hydrolyze ethyl acetate based on pH change. This method allowed identification of Pseudomonas putida NRRL B-18435 as a source of this activity and the cloning of a new esterase gene, estZ. Recombinant EstZ esterase was purified to near homogeneity and characterized. It belongs to family IV of lipolytic enzymes and contains the conserved catalytic triad of serine, aspartic acid, and histidine. As expected, this serine esterase was inhibited by phenylmethylsulfonyl fluoride and the histidine reagent diethylpyrocarbonate. The native and subunit molecular weights of the recombinant protein were 36,000, indicating that the enzyme exists as a monomer. By using alpha-naphthyl acetate as a model substrate, optimal activity was observed at pH 7.5 and 40 degrees C. The Km and Vmax for alpha-naphthyl acetate were 18 microM and 48.1 micromol. min(-1). mg of protein(-1), respectively. Among the aliphatic esters tested, the highest activity was obtained with propyl acetate (96 micromol. min(-1). mg of protein(-1)), followed by ethyl acetate (66 micromol. min(-1). mg of protein(-1)). Expression of estZ in E. coli KO11 reduced the concentration of ethyl acetate in fermentation broth (4.8% ethanol) to less than 20 mg liter(-1).  相似文献   

19.
A stable microbial population, consisting of seven bacterial strains and three yeast strains, was selected in batch cultures on a mixture of ortho and meta-xylene and butyl acetate as the sole source of carbon and energy. This population can completely degrade up to 10 g/L of a mixture of these xenobiotics (70% xylene and 30% butyl acetate wt/wt) in a two-phase aqueous-silicone oil system (70%/30% vol/vol) within 96 h, while for the usual one-phase system very low growth degradation rates were observed. Further organic solvents were tested and finally, silicon oil was selected as the best organic phase for such a two-phase system. With periodical pH adjustments to 6.0 in fed-batch mode, the culture showed a global degradation rate of 63 mg L-1 h-1.  相似文献   

20.
Five yeast extracts (YE) were fractionated by ultrafiltration (UF) with 1, 3, and 10 kDa molecular weight cutoff membranes, concentrated by freeze-drying, and the resulting powders of yeast extract filtrates (YEF) were evaluated for their growth-promoting properties on nine cultures of lactic acid bacteria (LAB). There was an increase in alpha-amino nitrogen content of the YEF powders as the pore size of the UF membranes used to filter the YE solutions decreased. The source of YE had a much greater effect than UF on the growth of LAB. This was also the case for the YEF contents in total and alpha-amino nitrogen. Growth curves of the LAB showed that maximum growth rate (mumax) data were on average 30% higher with bakers' YE than with brewers' YE, while maximum optical density (ODmax) values were on average 16% higher with bakers' YE. This could be related to the higher nitrogen content of the bakers' YE used in this study. Modification by UF of the YE had no significant influence on the growth of 4 of the 9 LAB strains. The three strains of Lactobacillus casei were negatively influenced by UF, as they did not grow as well in the media containing the YEF obtained after filtering with 1 and 3 kDa membranes. On a total solids basis, the 2.5 x retentates from the 10 kDa membrane gave, on average, 4% lower mumax and 5% lower ODmax values as compared to cultures where the corresponding YEF was used as medium supplement. This could also be partially related to the different nitrogen contents of the filtrates and retentates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号