首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visible absorption and circular dichroism (CD) spectra have been measured for complexes formed between nucleic acids (calf thymus DNA, poly(rA).poly(rU) and poly(rI).poly(rC)) and 9-aminoacridines (quinacrine, acranil and 9-amino-6-chloro-2-methoxy acridine). With poly(rA).poly(rU), a new absorption band was observed at longer wavelengths. The nucleic acid-drug complexes showed considerable different induced CD spectra. Analysis of these CD spectra suggests that the cationic side chains of quinacrine and acranil play an important role on the binding properties to DNA and poly(rA).poly(rU).  相似文献   

2.
Herein we describe the synthesis of novel 7-membered ring (oxepane) thymine and adenine nucleosides (oT and oA) and their corresponding 5'-O-phosphoramidite derivatives. Two homopolymeric sequences (oT(15) and oA(15)) were prepared via conventional solid-phase synthesis. The mutually complementary strands had the ability to form a duplex (oT(15):oA(15)) exhibiting a transition temperature of 12 degrees C. The oxepane oligonucleotides were also found to associate with their respective complementary RNA strands thus forming oT(15):rA(15) (13 degrees C) and oA(15):rU(15) (12 degrees C) hybrids. The corresponding native duplexes, namely dT(15):dA(15), dT(15):rA(15) and dA(15):rU(15) had melting temperatures of 37 degrees C, 32 degrees C and 16 degrees C, respectively. The CD spectrum of oT(15):rA(15) closely resembled that of the native dT(15):rA(15) hybrid and, in fact, both were found to be substrates for E. Coli RNase H. Thus the oxepane nucleic acids reported here are one of only a handful of DNA mimics capable of activating RNase H when bound to RNA.  相似文献   

3.
We have studied by gravimetric measurements and FTIR spectroscopy the hydration of duplexes and triplexes formed by combinations of dA(n), dT(n), rA(n), and rU(n) strands. Results obtained on hydrated films show important differences in their hydration and in the structural transitions which can be induced by varying the water content of the samples. The number of water molecules per nucleotide (w/n) measured at high relative humidity (98% R.H.) is found to be 21 for dA(n).dT(n) and 15 for rA(n).rU(n). Addition of a third rU(n) strand does not change the number of water molecules per nucleotide: w/n=21 for rU(n)*dA(n).dT(n) and w/n=15 for rU(n)*rA(n).rU(n). On the contrary, the addition of a third dT(n) strand changes the water content but in a different way, depending whether the duplex is DNA or RNA. Thus, a loss of four water molecules per nucleotide is measured for dT(n)*dA(n).dT(n) while an increase of two water molecules per nucleotide is observed for dT(n)*rA(n).rU(n). The final hydration is the same for both triplexes (w/n=17). The desorption profiles obtained by gravimetry and FTIR spectroscopy are similar for the rA(n).rU(n) duplex and the rU(n)*rA(n).rU(n) triplex. On the contrary, the desorption profiles of the dA(n).dT(n) duplex and the triplexes formed with it (rU(n)*dA(n).dT(n) and dT(n)*dA(n).dT(n)) are different from each other. This is correlated with conformational transitions induced by varying the hydration content of the different structures, as shown by FTIR spectroscopy. Modifications of the phosphate group hydration and of the sugar conformation (S to N type repuckering) induced by decrease of the water content are observed in the case of triplexes formed on the dA(n).dT(n) duplex.  相似文献   

4.
Fourier Transform Infrared Spectra of triple stranded polynucleotides containing homopurine dA or rA and homopyrimidine dT or rU strands have been obtained in H2O and D2O solutions as well as in hydrated films at various relative humidities. The spectra are interpreted by comparison with those of double stranded helixes with identical base and sugar composition. The study of the spectral domain corresponding to in-plane double bond stretching vibrations of the bases shows that whatever the initial duplex characterized by a different IR spectrum (A family form poly rA.poly rU, heternomous form poly rA.poly dT, B family form poly dA.poly dT), the triplexes present a similar IR spectrum reflecting similar base interactions. A particular attention is devoted to the 950-800 cm-1 region which contains marker bands of the sugar conformation in the nucleic acids. In solution the existence of only N (C3'endo-A family form) type of sugar pucker is detected in poly rU.poly rA.poly rU and poly dt.poly rA.poly rU. On the contrary absorption bands characteristic of both N (C3'endo-A family form) and S (C2'endo-B family form) type sugars are detected for poly rU.poly rA.poly dT, poly rU.poly dA.poly dT and poly dT.poly rA.poly dT. Finally mainly S (C2'endo-B family form) type sugars are observed in poly dT.poly dA.poly dT.  相似文献   

5.
Xi H  Davis E  Ranjan N  Xue L  Hyde-Volpe D  Arya DP 《Biochemistry》2011,50(42):9088-9113
Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized as playing an equally important role in DNA recognition. Competition dialysis, UV, flourescent intercalator displacement (FID), computational docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, the results suggest the following. (1) Neomycin binds three RNA structures [16S A site rRNA, poly(rA)·poly(rA), and poly(rA)·poly(rU)] with high affinities (K(a) ~ 10(7) M(-1)). (2) The binding of neomycin to A-form GC-rich oligomer d(A(2)G(15)C(15)T(2))(2) has an affinity comparable to those of RNA structures. (3) The binding of neomycin to DNA·RNA hybrids shows a 3-fold variance that can be attributed to their structural differences [for poly(dA)·poly(rU), K(a) = 9.4 × 10(6) M(-1), and for poly(rA)·poly(dT), K(a) = 3.1 × 10(6) M(-1)]. (4) The interaction of neomycin with DNA triplex poly(dA)·2poly(dT) yields a binding affinity (K(a)) of 2.4 × 10(5) M(-1). (5) Poly(dA-dT)(2) shows the lowest association constant for all nucleic acids studied (K(a) < 10(5)). (6) Neomycin binds to G-quadruplexes with K(a) values of ~10(4)-10(5) M(-1). (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin's affinity for various nucleic acid structures can be ranked as follows: RNAs and GC-rich d(A(2)G(15)C(15)T(2))(2) structures > poly(dA)·poly(rU) > poly(rA)·poly(dT) > T·A-T triplex, G-quadruplex, B-form AT-rich, or GC-rich DNA sequences. The results illustrate the first example of a small molecule-based "shape readout" of different nucleic acid conformations.  相似文献   

6.
H Takashima  M Nakanishi  M Tsuboi 《Biochemistry》1985,24(18):4823-4825
The kinetics of the hydrogen-deuterium exchange reactions of poly(dA).poly(rU) and poly(rA).poly(dT) has been examined, at pH 7.0 and at various temperatures in the 15-35 degrees C range, by stopped-flow ultraviolet spectrophotometry. For comparison, the deuteration kinetics of poly[d(A-T)].poly[d(A-T)] and poly(rA).poly(rU) has been reexamined. At 20 degrees C, the imino deuteration (NH----ND) rates of the two hybrid duplexes were found to be 1.5 and 1.8 s-1, respectively. These are nearly equal to the imino deuteration rates of poly[d(A-T)].poly[d(A-T)] (1.1 s-1) and poly(rA).poly(rU) (1.5 s-1) but appreciably higher than that of poly(dA).poly(dT) (0.35 s-1). It has been suggested that a DNA.RNA hybrid, an RNA duplex, and the AT-alternating DNA duplex have in general higher base-pair-opening reaction rates than the ordinary DNA duplex. The amino deuteration (NH2----ND2) rates, on the other hand, have been found to be 0.25, 0.28, and 0.33 s-1, respectively, for poly(dA).poly(rU), poly(rA).poly(dT), and poly[d(A-T)].poly[d(A-T)], at 20 degrees C. These are appreciably higher than that for poly(rA).poly(rU) (0.10 s-1). In general, the equilibrium constants (K) of the base-pair opening are considered to be greatest for the DNA.RNA hybrid duplex (0.05 at 20 degrees C), second greatest for the RNA duplex (0.02 at 20 degrees C), and smallest for the DNA duplex (0.005 at 20 degrees C), although the AT-alternating DNA duplex has an exceptionally great K (0.07 at 20 degrees C). From the temperature effect on the K value, the enthalpy of the base-pair opening was estimated to be 3.0 kcal/mol for the DNA.RNA hybrid duplex.  相似文献   

7.
Sugimoto N  Nakano M  Nakano S 《Biochemistry》2000,39(37):11270-11281
Thermodynamics of 66 RNA/DNA duplexes containing single mismatches were measured by UV melting methods. Stability enhancements for rG. dT mismatches were the largest of all mismatches examined here, while rU.dG mismatches were not as stable. The methyl group on C5 of thymine enhanced the stability by 0.12 approximately 0.53 kcal mol(-)(1) depending on the identity of adjacent Watson-Crick base pairs, whereas the 2'-hydroxyl group in ribouridine stabilized the duplex by approximately 0.6 kcal mol(-)(1) regardless of the adjacent base pairs. Stabilities induced by the methyl group in thymine, the 2'-hydroxyl group of ribouridine, and an nucleotide exchange at rG.dT and rU.dG mismatches were found to be independent of each other. The order for the mismatch stabilities is rG.dT > rU. dG approximately rG.dG > rA.dG approximately rG.dA approximately rA. dC > rA.dA approximately rU.dT approximately rU.dC > rC.dA approximately rC.dT, although the identity of the adjacent base pairs slightly altered the order. The pH dependence stability and structural changes were suggested for the rA.dG but not for rG.dA mismatches. Comparisons of trinucleotide stabilities for G.T and G.U pairs in RNA, DNA, and RNA/DNA duplexes indicate that stable RNA/DNA mismatches exhibit a stability similar to RNA mismatches while unstable RNA/DNA mismatches show a stability similar to that of DNA mismatches. These results would be useful for the design of antisense oligonucleotides.  相似文献   

8.
We have used a combination of densimetric, calorimetric, and uv absorption techniques to obtain a complete thermodynamic characterization for the formation of nucleic acid homoduplexes of known sequence and conformation. The volume change ΔV accompanying the formation of four duplexes was interpreted to reflect changes in hydration based on the electrostriction phenomenon. In 10 mM sodium phosphate buffer at pH 7, the magnitude of the measured ΔV's ranged from ?2.0 to +7.2 ml/mol base pair and followed the order of poly(rA) · poly(dT) ~ poly(dA) · poly(dT) < poly(rA) · poly(dU) ~ poly(rA) · poly(rU). Inclusion of 100 mM NaCl in the same buffer gave the range of ?17.4 to ?2.3 mL/mol base pair and the following order: poly(dA) · poly(dT) < poly(rA) · poly(dT) < poly(rA) · poly(rU) ~ poly(rA) ~ polyr(dU). Standard thermodynamic profiles of forming these duplexes from their corresponding complementary single strands indicated similar free energies that resulted from the compensation of favorable enthalpies with unfavorable entropies along with a similar counterion uptake at both ionic strengths. The differences in these compensating effects of entropy and enthalpy correlated very well with the volume change measurements in a manner suggesting that the homoduplexes in the B conformation are more hydrated than are those in the A conformation. Moreover, the increased thermal stability of these homoduplexes resulted from an increase in the salt concentration corresponding to larger hydration levels as reflected by the ΔV results. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Using high precision densimetric and ultrasonic measurements, we have determined, at 25°C, the apparent molar volumes ΦV and the apparent molar compressibilities ΦKS of four nucleic acid duplexes—namely, the DNA duplex, poly(dIdC)poly(dIdC); the RNA duplex, poly(rA)poly(rU); and the two DNA/RNA hybrid duplexes, poly(rA)poly(dT) and poly(dA)poly(rU). Using available fiber diffraction data on these duplexes, we have calculated the molecular volumes as well as the solvent‐accessible surface areas of the constituent charged, polar, and nonpolar atomic groups. We found that the hydration properties of these nucleic acid duplexes do not correlate with the extent and the chemical nature of the solvent‐exposed surfaces, thereby suggesting a more specific set of duplex–water interactions beyond general solvation effects. A comparative analysis of our volumetric data on the four duplexes, in conjunction with available structural information, suggests the following features of duplex hydration: (a) The four duplexes exhibit different degrees of hydration, in the order poly(dIdC)poly(dIdC) > poly(dGdC)poly(dGdC) > poly(dAdT)poly(dAdT) ≈ poly(dA)poly(dT). (b) Repetitive AT and IC sequences within a duplex are solvated beyond general effects by a spine of hydration in the minor groove, with this sequence‐specific water network involving about 8 additional water molecules from the second and, perhaps, even the third hydration layers. (c) Repetitive GC and IC sequences within a duplex are solvated beyond general effects by a “patch of hydration” in the major groove, with this water network involving about 13 additional water molecules from the second and, perhaps, even the third hydration layers. (d) Random sequence, polymeric DNA duplexes, which statistically lack extended regions of repetitive AT, GC, or IC sequences, do not experience such specific enhancements of hydration. Consequently, consistent with our previous observations (T. V. Chalikian, A. P. Sarvazyan, G. E. Plum, and K. J. Breslauer, Biochemistry, 1994, Vol. 33, pp. 2394–2401), duplexes with approximately 50% AT content exhibit the weakest hydration, while an increase or decrease from this AT content causes enhancement of hydration, either due to stronger hydration of the minor groove (an increase in AT content) or due to stronger hydration of the major groove (an increase in GC content). (e) In dilute aqueous solutions, a B‐DNA duplex is more hydrated than an A‐DNA duplex, a volumetric‐based conclusion that is in agreement with previous results obtained on crystals, fibers, and DNA solutions in organic solvent–water mixtures. (f) the A‐like, RNA duplex poly(rA)poly(rU) and the structurally similar A‐like, hybrid duplex poly(rA)poly(dT), exhibit similar hydration properties, while the structurally distinct A‐like, hybrid duplex poly(rA)poly(dT) and non‐A‐like, hybrid duplex poly(dA)poly(rU) exhibit differential hydration properties, consistent with structural features dictating hydration characteristics. We discuss how volumetric characterizations, in conjunction with structural studies, can be used to describe, define, and resolve the general and sequence/conformation‐specific hydration properties of nucleic acid duplexes. © 1999 John Wiley & Sons, Inc. Biopoly 50: 459–471, 1999  相似文献   

10.
K Zieba  T M Chu  D W Kupke  L A Marky 《Biochemistry》1991,30(32):8018-8026
The role of water in the formation of stable duplexes of nucleic acids is being studied by determining the concurrent volume change, heats, and counterion uptake that accompany the duplexation process. The variability of the volume contraction that we have observed in the formation of a variety of homoduplexes suggests that sequence and conformation acutely affect the degree of hydration. We have used a combination of densimetric and calorimetric techniques to measure the change in volume and enthalpy resulting from the mixing of two complementary strands to form (a) fully paired duplexes with 10 or 11 base pairs and (b) bulged decameric duplexes with an extra dA or dT unmatched residue. We also monitored absorbance vs temperature profiles as a function of strand and salt concentration for all four duplexes. Relative to the decamer duplex, insertion of an extra dA.dT base pair to form an undecamer duplex results in a favorable enthalpy of -5.6 kcal/mol that is nearly compensated by an unfavorable entropy term of -5.1 kcal/mol. This enthalpy difference correlates with a differential uptake of water molecules, corresponding to an additional hydration of 16 mol of water molecules/mol of base pair. Relative to the fully paired duplexes, both bulged duplexes are 12-16 degrees C less stable and exhibit marginally larger counterion uptake on forming the duplex. The enthalpy change is slightly lower for the T-bulge duplex and less still for the A-bulge duplex. The volume change results indicate that an unmatched residue increases the amount of coulombic and/or structural hydration. The combined results strongly suggest that the destabilizing forces in bulged duplexes are partially compensated by an increase in hydration levels.  相似文献   

11.
We have compared the properties of the poly(rA).oligo(dT) complex with those of the poly(rU).oligo(dA)n complex. Three main differences were found. First, poly(rA) and oligo(dT)n do not form a complex in concentrations of CsCl exceeding 2 M because the poly(rA) is insoluble in high salt. If the complex is made in low salt, it is destabilized if the CsCl concentration is raised. Complexes between poly(rU) and oligo(dA)n, on the other hand, can be formed in CsCl concentrations up to 6.6 M. Second, complexes between poly(rA) and oligo(dT)n are more rapidly destabilized with decreasing chain length than complexes between poly(rU) and oligo(dA)n. Third, the density of the complex between poly(rA) and poly(dT) in CsCl is slightly lower than that of poly(dT), whereas the density of the complex between poly(rU) and poly(dA) in CsCl is at least 300 g/cm3 higher than that of poly(dA). These results explain why denatured natural DNAs that bind poly(rU) in a CsCl gradient usually do not bind poly(rA).  相似文献   

12.
We have studied the interaction of poly(rA) and poly(rU) with natural DNAs containing (dA.dT)n sequences. The results indicate that hybridization of poly(rA) to denatured DNA can be used to estimate the size and frequency of large (dA.dT)n tracts, whereas hybridization with poly(rU) does not give reliable information on these points. In 6.6 M CsCl, poly(rU) can form stable complexes with denatured DNA containing short (dA)n tracts (n less than or equal to 6), whereas binding of poly(rA) to denatured DNA under these conditions requires much larger (dT)n tracts (estimated n greater than 13). Moreover, binding of poly(rA) requires pre-hybridization in low salt, because free poly(rA) precipitates in 6.6 M CsCl.  相似文献   

13.
The melting temperature of the poly(dA) . poly(dT) double helix is exquisitely sensitive to salt concentration, and the helix-to-coil transition is sharp. Modern calorimetric instrumentation allows this transition to be detected and characterized with high precision at extremely low duplex concentrations. We have taken advantage of these properties to show that this duplex can be used as a sensitive probe to detect and to characterize the influence of other solutes on solution properties. We demonstrate how the temperature associated with poly(dA) . poly(dT) melting can be used to define the change in bulk solution cation concentration imparted by the presence of other duplex and triplex solutes, in both their native and denatured states. We use this information to critically evaluate features of counterion condensation theory, as well as to illustrate "crosstalk" between different, non-contacting solute molecules. Specifically, we probe the melting of a synthetic homopolymer, poly(dA) . poly(dT), in the presence of excess genomic salmon sperm DNA, or in the presence of one of two synthetic RNA polymers (the poly(rA) . poly(rU) duplex or the poly(rU) . poly(rA) . poly(rU) triplex). We find that these additions cause a shift in the melting temperature of poly(dA) . poly(dT), which is proportional to the concentration of the added polymer and dependent on its conformational state (B versus A, native versus denatured, and triplex versus duplex). To a first approximation, the magnitude of the observed tm shift does not depend significantly on whether the added polymer is RNA or DNA, but it does depend on the number of strands making up the helix of the added polymer. We ascribe the observed changes in melting temperature of poly(dA) . poly(dT) to the increase in ionic strength of the bulk solution brought about by the presence of the added nucleic acid and its associated counterions. We refer to this communication between non-contacting biopolymers in solution as solvent-mediated crosstalk. By comparison with a known standard curve of tm versus log[Na+] for poly(dA) . poly(dT), we estimate the magnitude of the apparent change in ionic strength resulting from the presence of the bulk nucleic acid, and we compare these results with predictions from theory. We find that current theoretical considerations correctly predict the direction of the t(m) shift (the melting temperature increases), while overestimating its magnitude. Specifically, we observe an apparent increase in ionic strength equal to 5% of the concentration of the added duplex DNA or RNA (in mol phosphate), and an additional apparent increase of about 9.5 % of the nucleic acid concentration (mol phosphate) upon denaturation of the added DNA or RNA, yielding a total apparent increase of 14.5 %. For the poly(rU) . poly(rA) . poly(rU) triplex, the total apparent increase in ionic strength corresponds to about 13.6% of the amount of added triplex (moles phosphate). The effect we observe is due to coupled equilibria between the solute molecules mediated by modulations in cation concentration induced by the presence and/or the transition of one of the solute molecules. We note that our results are general, so one can use a different solute probe sensitive to proton binding to characterize subtle changes in solution pH induced by the presence of another solute in solution. We discuss some of the broader implications of these measurements/results in terms of nucleic acid melting in multicomponent systems, in terms of probing counterion environments, and in terms of potential regulatory mechanisms.  相似文献   

14.
Raman spectroscopy was used to study the low-frequency (?200?cm?1) vibrations in crystalline samples of six naturally occurring nucleosides: deoxythymidine (dT), deoxycytidine (dC), deoxyadenosine (dA), uridine (rU), cytidine (rC), and adenosine (rA). Such low-frequency vibrations are important for biological processes in which the conformation of a nucleic acid molecule changes. These experiments also provide a test for the low-frequency vibrational modes of dT, dC, and dA predicted by Shishkin et al.  相似文献   

15.
The bacteriophage T4 regA protein is a translational repressor of a group of T4 early mRNAs. We have characterized the binding of regA protein to polynucleotides and to specific RNAs. Binding to nucleic acids was monitored by the quenching of the intrinsic tryptophan fluorescence of regA protein. regA protein exhibited differential affinities for the polynucleotides examined, with the order of affinity being poly(rU) greater than poly(dT) greater than poly(dU) = poly(rG) greater than poly(rC) = poly(rA). The binding site size calculated for regA protein binding to poly(rU) was n = 9 +/- 1 nucleotides. Cooperativity was observed in binding to multiple-site oligonucleotides, with a cooperativity parameter (omega) value of 10-22. To study the specific interaction between regA protein and T4 gene 44 mRNA, the affinity of regA protein for synthetic gene 44 RNA fragments was measured. The association constant (Ka) for regA protein binding to gene 44 RNA fragments was 100-fold higher than for binding to nontarget RNA. Study of variant gene 44 RNA fragments indicated that the nucleotides required for specific binding are contained within a 12-nucleotide sequence spanning -12 to -1, relative to the AUG codon. The bases of five nucleotides (indicated in upper case type) are critical for specific regA protein interaction with the gene 44 recognition element, 5'-aaUGAGgAaauu-3'. These studies further showed that formation of a regA protein-RNA complex involves a maximum of 2-3 ionic interactions and is primarily an enthalpy-driven process.  相似文献   

16.
Multistranded helical structures in nucleic acids play various functions in biological processes. Here we report the crystal structure of a hexamer, rU(BrdG)r(AGGU),at 1.5 A resolution containing a structural complex of an alternating antiparallel eight-stranded helical fragment that is sandwiched in two tetraplexes. The octaplex is formed by groove binding interaction and base tetrad intercalation between two tetraplexes. Two different forms of octaplexes have been proposed, which display different properties in interaction with proteins and nucleic acids. Adenines form a base tetrad in the novel N6-H em leader N3 conformation and further interact with uridines to form an adenine-uridine octad in the reverse Hoogsteen pairing scheme. The conformational flexibility of adenine tetrad indicates that it can optimize its conformation in different interactions.  相似文献   

17.
Single-pulse (approximately 8 ns) ultraviolet laser excitation of protein-nucleic acid complexes can result in efficient and rapid covalent cross-linking of proteins to nucleic acids. The reaction produces no nucleic acid-nucleic acid or protein-protein cross-links, and no nucleic acid degradation. The efficiency of cross-linking is dependent on the wavelength of the exciting radiation, on the nucleotide composition of the nucleic acid, and on the total photon flux. The yield of cross-links/laser pulse is largest between 245 and 280 nm; cross-links are obtained with far UV photons (200-240 nm) as well, but in this range appreciable protein degradation is also observed. The method has been calibrated using the phage T4-coded gene 32 (single-stranded DNA-binding) protein interaction with oligonucleotides, for which binding constants have been measured previously by standard physical chemical methods (Kowalczykowski, S. C., Lonberg, N., Newport, J. W., and von Hippel, P. H. (1981) J. Mol. Biol. 145, 75-104). Photoactivation occurs primarily through the nucleotide residues of DNA and RNA at excitation wavelengths greater than 245 nm, with reaction through thymidine being greatly favored. The nucleotide residues may be ranked in order of decreasing photoreactivity as: dT much greater than dC greater than rU greater than rC, dA, dG. Cross-linking appears to be a single-photon process and occurs through single nucleotide (dT) residues; pyrimidine dimer formation is not involved. Preliminary studies of the individual proteins of the five-protein T4 DNA replication complex show that gene 43 protein (polymerase), gene 32 protein, and gene 44 and 45 (polymerase accessory) proteins all make contact with DNA, and can be cross-linked to it, whereas gene 62 (polymerase accessory) protein cannot. A survey of other nucleic acid-binding proteins has shown that E. coli RNA polymerase, DNA polymerase I, and rho protein can all be cross-linked to various nucleic acids by the laser technique. The potential uses of this procedure in probing protein-nucleic acid interactions are discussed.  相似文献   

18.
Summary Nine human-human hybridoma clones, secreting monoclonal antibodies reactive with nucleic acids, were generated by fusing with lymphocytes of lung cancer or systemic lupus erythematosus patients. These hybridoma antibodies were classified into 5 types, in terms of reactivities with DNA, RNA, various synthetic nucleic acids and cardiolipin. Hybridoma clone SU-1 secreted antibody reacting with dsDNA, ssDNA and RNA (type I). Clone HL-321 did not react with these, but with poly (dT), poly (I) and poly (G) (type II). Clone HL-349 was reactive with almost all nucleic acids tested and also with cardiolipin (type III). Clones HF-4, HF-7, HB-7 and HL-259 reacted with ssDNA, poly(A), poly(G) and cardiolipin, but not with RNA (type IV). HB-5 and SH-9 antibodies were reactive only with poly (dT) (type V). Editor’s Statement This paper describes isolation and characterization of human-human hybridoma clones producing antibodies to nucleic acids. Isolation of such hybridomas from lymphocytes of cancer patients and the similarity of some isolates to those obtained from mice exhibiting autoimmune disease represent interesting observations that may lead to future insights.  相似文献   

19.
20.
A A Komissarov  S L Deutscher 《Biochemistry》1999,38(44):14631-14637
The recombinant anti-ssDNA Fab, DNA-1, and 16 heavy chain complementarity determining region 3 (HCDR3) mutant variants were selected for thermodynamic characterization of ssDNA binding. The affinity of Fab to (dT)(15) under different temperatures and cation concentrations was measured by equilibrium fluorescence quenching titration. Changes in the standard Gibbs free binding energy (DeltaG degrees ), enthalpy (DeltaH degrees ), entropy (DeltaS degrees ), and the number of ionic pairs (Z) formed upon interaction were determined. All Fab possessed an enthalpic nature of interaction with ssDNA, that was opposite to the previously reported entropically driven binding to dsDNA [Tanha, J., and Lee, J. S. (1997) Nucleic Acids Res. 25, 1442-1449]. The contribution of separate residues of HCDR3 to ssDNA interaction was investigated. Analysis of the changes in DeltaH degrees and TDeltaS degrees, induced by substitutions in HCDR3, revealed a complete entropy/enthalpy compensation. Mutations R98A and D108A at the ends of the HCDR3 loop produced increases in TDeltaS degrees ( )()by 10.4 and 15.9 kcal/mol, respectively. Substitution of proline for arginine at the top of HCDR3 resulted in a new electrostatic contact with (dT)(15). The observed linear correlation of Z and DeltaG degrees ( )()of nonelectrostatic interactions (DeltaG degrees (nonel)) at the anti-ssDNA combining site was used for the estimation of the specific DeltaG degrees (nonel) [-20 to -25 cal/(mol.A(2))], the average contact area (450-550 A(2)), the maximal Z (6-7), and the limit in affinity under standard cation concentrations [(0.5-1) x 10(8) M(-)(1)] for this family of Fab. Results suggested that rational engineering of HCDR3 could be utilized to control the affinity and likely the specificity of Ab-DNA interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号