首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background The human 5T4 (h5T4) oncofoetal antigen is expressed by a wide variety of human carcinomas including colorectal, ovarian, gastric and renal, but rarely on normal tissues. Its restricted expression on tumour tissues as well as its association with tumour progression and bad prognosis has driven the development of a MVA-based vaccine (TroVax) which has been tested in several early phase clinical trials and these studies have led to the start of a phase III trial in renal cell carcinoma patients. We have recently shown that CD8+ T cells recognizing h5T4 can be generated in the absence of CD4+ T cells from peripheral blood lymphocytes of human healthy individuals. Results We report the existence and expansion of human CD4+ T cells against h5T4 by stimulation with autologous monocyte-derived dendritic cells infected with a replication defective adenovirus encoding the h5T4 cDNA (Ad-h5T4). The h5T4-specific T-cell responses in normal individuals are enhanced by initial depletion of CD25+ cells (putative T regulatory cells) prior to the in vitro stimulation. We have identified a novel h5T4-derived 15-mer peptide recognized by CD4+ T cells in HLA-DR4 positive healthy individuals. Interestingly, CD4+ T cells spontaneously recognizing a different 5T4 epitope restricted by HLA-DR were identified in tumour-infiltrating lymphocytes isolated from a regressing renal cell carcinoma lung metastasis. Conclusion Our data show that CD4+ T cells recognizing h5T4 can be expanded and detected in healthy individuals and a renal cell carcinoma patient. Such h5T4-specific CD4+ T cells boosted or induced by vaccination could act to modulate both cell or antibody mediated anti-tumour responses. This work was supported by Cancer Research UK.  相似文献   

2.
The important role of tumor-specific cytotoxic CD8+ T cells is well defined in the immune control of the tumors, but the role of effector CD4+ T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4+ T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4+ T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8+ T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4+ T cells and increases FV-specific CD4+ T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4+ T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4+ T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.  相似文献   

3.
Molecularly defined synthetic vaccines capable of inducing both antibodies and cellular anti-tumor immune responses, in a manner compatible with human delivery, are limited. Few molecules achieve this target without utilizing external immuno-adjuvants. In this study, we explored a self-adjuvanting glyco-lipopeptide (GLP) as a platform for cancer vaccines using as a model MO5, an OVA-expressing mouse B16 melanoma. A prototype B and T cell epitope-based GLP molecule was constructed by synthesizing a chimeric peptide made of a CD8+ T cell epitope, from ovalbumin (OVA257–264) and an universal CD4+ T helper (Th) epitope (PADRE). The resulting CTL–Th peptide backbones was coupled to a carbohydrate B cell epitope based on a regioselectively addressable functionalized templates (RAFT), made of four α-GalNAc molecules at C-terminal. The N terminus of the resulting glycopeptides (GP) was then linked to a palmitic acid moiety (PAM), obviating the need for potentially toxic external immuno-adjuvants. The final prototype OVA-GLP molecule, delivered in adjuvant-free PBS, in mice induced: (1) robust RAFT-specific IgG/IgM that recognized tumor cell lines; (2) local and systemic OVA257–264-specific IFN-γ producing CD8+ T cells; (3) PADRE-specific CD4+ T cells; (4) OVA-GLP vaccination elicited a reduction of tumor size in mice inoculated with syngeneic murine MO5 carcinoma cells and a protection from lethal carcinoma cell challenge; (5) finally, OVA-GLP immunization significantly inhibited the growth of pre-established MO5 tumors. Our results suggest self-adjuvanting glyco-lipopeptide molecules as a platform for B Cell, CD4+, and CD8+ T cell epitopes-based immunotherapeutic cancer vaccines. Both I. Bettahi and G. Dasgupta have contributed equally to this work.  相似文献   

4.
Absence of CD4+ T cell help has been suggested as a mechanism for failed anti-tumor cytotoxic T lymphocytes (CTL) response. We examined the requirement for CD4+ T cells to eliminate an immunogenic murine fibrosarcoma (6132A) inoculated into the peritoneal cavity. Immunocompetent C3H mice eliminated both single and repeat intraperitoneal (IP) inoculums, and developed high frequency of 6132A-specific interferon-γ (IFNγ)-producing CTL in the peritoneal cavity. Adoptive transfer of peritoneal exudate cells (PEC) isolated from control mice, protected SCID mice from challenge with 6132A. In contrast, CD4 depleted mice had diminished ability to eliminate tumor and succumbed to repeat IP challenges. Mice depleted of CD4+ T cells lacked tumor-specific IFNγ producing CTL in the peritoneal cavity. Adoptive transfer of PEC from CD4 depleted mice failed to protect SCID mice from 6132A. However, splenocytes isolated from same CD4 depleted mice prevented tumor growth in SCID mice, suggesting that 6132A-specific CTL response was generated, but was not sustained in the peritoneum. Treating CD4 depleted mice with agonist anti-CD40 antibody, starting on days 3 or 8 after initiating tumor challenge, led to persistence of 6132A-specific IFNγ producing CTL in the peritoneum, and eliminated 6132A tumor. The findings suggest that CTL can be activated in the absence of CD4+ T cells, but CD4+ T cells are required for a persistent CTL response at the tumor site. Exogenous stimulation through CD40 can restore tumor-specific CTL activity to the peritoneum and promote tumor clearance in the absence of CD4+ T cells.Supported in part by grants from Children’s Hospital of Wisconsin Foundation, Society of University Surgeons Foundation, Florence and Marshall Schwid Foundation, Elsa Pardee Foundation, Kathy Duffy Fogarty Fund of the Greater Milwaukee Foundation (JS) and NIH grant RO1-CA-37156 (HS); Andrew Lodge and Ping Yu have contributed equally to this work.  相似文献   

5.
Experiments were undertaken to determine whether the depletion of CD4+ T cells from mice bearing an advanced immunogenic SA-1 sarcoma would result in an enhanced ability of interleukin-2 (IL-2) to cause tumor regression. The results show that whereas IL-2 therapy given as a 5-day course starting on day 10 of tumor growth caused complete regression of the tumor, it failed to cause regression if started on day 15 of tumor growth. However, in mice depleted of CD4+ T cells by treatment with anti-CD4 monoclonal antibody (mAb), IL-2 therapy started on day 15 resulted in appreciable tumor regression in most animals, and the therapeutic effect was greatly increased if two consccutive courses of anti-CD4 mAb and IL-2 therapy were given. On the other hand, treatment with anti-CD4 mAb alone had no effect on tumor growth. It was shown that the therapeutic action of combination therapy with anti-CD4 mAb and IL-2 was mediated by CD8+ T cells, because the therapeutic effect was completely ablated in mice depleted of CD8+ T cells with anti-CD8 mAb. Taken together these results suggest that, at a late stage of growth of an immunogenic tumor, depletion of CD4+ T cells can enhance the antitumor effect of IL-2 therapy by releasing CD8+-T-cell-mediated immunity from T-cell-mediated suppression.  相似文献   

6.
Advanced metastatic renal cell carcinoma has been shown to be responsive to immunotherapy but the response rate is still limited. We have investigated the therapeutic potential of systemic interleukin-4 (IL-4) administration for the treatment of pulmonary metastases in the murine Renca renal adenocarcinoma model. Renca cells were injected iv in Balb/c mice to induce multiple pulmonary tumor nodules. From Day 5, Renca-bearing mice were treated with two daily injections of recombinant murine IL-4 for 5 consecutive days. IL-4 treatment induced a significant reduction in the number of lung metastases in a dose-dependent manner and significantly augmented the survival of treated animals. Immunohistochemistry studies, performed on lung sections, showed macrophage and CD8+ T cell infiltration in the tumor nodules 1 day after the end of IL-4 treatment. The CD8 infiltration increased by Day 7 after IL-4 treatment. Granulocyte infiltration was not detectable. To clarify further the role of the immune system in IL-4 anti-tumor effect, mice were depleted of lymphocyte subpopulations by in vivo injections of specific antibodies prior to treatment with IL-4. Depletion of CD8+ T cells or AsGM1+ cells abrogated the effect of IL-4 on lung metastases, whereas depletion of CD4+ T cells had no impact. These data indicate that CD8+ T cells and AsGM1+ cells are involved in IL-4-induced regression of established renal cell carcinoma.  相似文献   

7.
Interactions between CD40 and CD40L play a central role in the regulation of both humoral and cellular immunity. Recently, interactions between these molecules have also been implicated in the generation of protective cell-mediated tumor immunity. We have generated a tumor model in which a well-understood and clearly immunostimulatory antigen, influenza hemagglutinin has been transfected into the BALB/c-derived, MHC-class-I-positive, B7-deficient murine mammary carcinoma, MT901. In this model, expression of the influenza hemagglutinin antigen does not alter tumorigenicity in naïve but serves as a tumor-rejection target in immunized mice. T-cell-depletion experiments indicate that successful tumor protection can occur following immunization in mice depleted of CD4+ but not CD8+ T cells, suggesting that tumor protection is largely CD8-mediated and CD4-independent. Interestingly, despite the ability of tumor protection to be generated in the absence of CD4+ T cells, effective immunization was clearly dependent on CD40/CD40L as well as CD28/B7 interactions.  相似文献   

8.
Receptor for hyaluronan-mediated motility (RHAMM) is overexpressed in various tumors with high frequency, and was recently identified as an immunogenic antigen by serologic screening of cDNA expression libraries. In this study, we explored whether RHAMM is a potential target for dendritic cell (DC) immunotherapy. We constructed a plasmid for transduction of in vitro-transcribed mRNAs into DCs to efficiently transport the intracellular protein RHAMM into MHC class II compartments by adding a late endosomal/lysosomal sorting signal to the RHAMM gene. Immunization of mice with modified RHAMM mRNA-transfected DCs (DC/RHAMM) induced killing activity against RHAMM-positive tumor cells in splenocytes. To examine whether CD4+ and/or CD8+ T cells were required for this antitumor immunity, an anti-CD4 or anti-CD8 antibody was administered to mice after immunization with DC/RHAMM. Depletion of CD4+ T cells significantly diminished the induction of tumor cell-killing activity in splenocytes, whereas CD8+ T cell depletion had no effect. We then investigated the therapeutic effect of DC/RHAMM in a 3-day tumor model of EL4. DC/RHAMM was administered to mice on days 3, 7 and 10 after EL4 tumor inoculation. The treatment markedly inhibited tumor growth compared to control DCs. Moreover, antibody-mediated depletion of CD4+ T cells completely abrogated the therapeutic effect of DC/RHAMM, whereas depletion of CD8+ T cells had no effect. The results of this preclinical study indicate that DCs transfected with a modified RHAMM mRNA targeted to MHC class II compartments can induce CD4+ T cell-mediated antitumor activity in vivo.  相似文献   

9.

Background

Using in vivo mouse models, the mechanisms of CD4+ T cell help have been intensively investigated. However, a mechanistic analysis of human CD4+ T cell help is largely lacking. Our goal was to elucidate the mechanisms of human CD4+ T cell help of CD8+ T cell proliferation using a novel in vitro model.

Methods/Principal Findings

We developed a genetically engineered novel human cell-based artificial APC, aAPC/mOKT3, which expresses a membranous form of the anti-CD3 monoclonal antibody OKT3 as well as other immune accessory molecules. Without requiring the addition of allogeneic feeder cells, aAPC/mOKT3 enabled the expansion of both peripheral and tumor-infiltrating T cells, regardless of HLA-restriction. Stimulation with aAPC/mOKT3 did not expand Foxp3+ regulatory T cells, and expanded tumor infiltrating lymphocytes predominantly secreted Th1-type cytokines, interferon-γ and IL-2. In this aAPC-based system, the presence of autologous CD4+ T cells was associated with significantly improved CD8+ T cell expansion in vitro. The CD4+ T cell derived cytokines IL-2 and IL-21 were necessary but not sufficient for this effect. However, CD4+ T cell help of CD8+ T cell proliferation was partially recapitulated by both adding IL-2/IL-21 and by upregulation of IL-21 receptor on CD8+ T cells.

Conclusions

We have developed an in vitro model that advances our understanding of the immunobiology of human CD4+ T cell help of CD8+ T cells. Our data suggests that human CD4+ T cell help can be leveraged to expand CD8+ T cells in vitro.  相似文献   

10.
Despite the advent of effective antiretroviral therapy (ART), human immunodeficiency virus (HIV) continues to pose major challenges, with extensive pathogenesis during acute and chronic infection prior to ART initiation and continued persistence in a reservoir of infected CD4 T cells during long-term ART. CD101 has recently been characterized to play an important role in CD4 Treg potency. Using the simian immunodeficiency virus (SIV) model of HIV infection in rhesus macaques, we characterized the role and kinetics of CD101+ CD4 T cells in longitudinal SIV infection. Phenotypic analyses and single-cell RNAseq profiling revealed that CD101 marked CD4 Tregs with high immunosuppressive potential, distinct from CD101- Tregs, and these cells also were ideal target cells for HIV/SIV infection, with higher expression of CCR5 and α4β7 in the gut mucosa. Notably, during acute SIV infection, CD101+ CD4 T cells were preferentially depleted across all CD4 subsets when compared with their CD101- counterpart, with a pronounced reduction within the Treg compartment, as well as significant depletion in mucosal tissue. Depletion of CD101+ CD4 was associated with increased viral burden in plasma and gut and elevated levels of inflammatory cytokines. While restored during long-term ART, the reconstituted CD101+ CD4 T cells display a phenotypic profile with high expression of inhibitory receptors (including PD-1 and CTLA-4), immunsuppressive cytokine production, and high levels of Ki-67, consistent with potential for homeostatic proliferation. Both the depletion of CD101+ cells and phenotypic profile of these cells found in the SIV model were confirmed in people with HIV on ART. Overall, these data suggest an important role for CD101-expressing CD4 T cells at all stages of HIV/SIV infection and a potential rationale for targeting CD101 to limit HIV pathogenesis and persistence, particularly at mucosal sites.  相似文献   

11.
Liver macrophages internalize circulating bloodborne parasites. It remains poorly understood how this process affects the fate of the macrophages and T cell responses in the liver. Here, we report that infection by Trypanosoma brucei induced depletion of macrophages in the liver, leading to the repopulation of CXCL16-secreting intrahepatic macrophages, associated with substantial accumulation of CXCR6+CD4+ T cells in the liver. Interestingly, disruption of CXCR6 signaling did not affect control of the parasitemia, but significantly enhanced the survival of infected mice, associated with reduced inflammation and liver injury. Infected CXCR6 deficient mice displayed a reduced accumulation of CD4+ T cells in the liver; adoptive transfer experiments suggested that the reduction of CD4+ T cells in the liver was attributed to a cell intrinsic property of CXCR6 deficient CD4+ T cells. Importantly, infected CXCR6 deficient mice receiving wild-type CD4+ T cells survived significantly shorter than those receiving CXCR6 deficient CD4+ T cells, demonstrating that CXCR6+CD4+ T cells promote the mortality. We conclude that infection of T. brucei leads to depletion and repopulation of liver macrophages, associated with a substantial influx of CXCR6+CD4+ T cells that mediates mortality.  相似文献   

12.
In contrast to the ability of long-lived CD8+ memory T cells to mediate protection against systemic viral infections, the relationship between CD4+ T cell memory and acquired resistance against infectious pathogens remains poorly defined. This is especially true for T helper 1 (Th1) concomitant immunity, in which protection against reinfection coincides with a persisting primary infection. In these situations, pre-existing effector CD4 T cells generated by ongoing chronic infection, not memory cells, may be essential for protection against reinfection. We present a systematic study of the tissue homing properties, functionality, and life span of subsets of memory and effector CD4 T cells activated in the setting of chronic Leishmania major infection in resistant C57Bl/6 mice. We found that pre-existing, CD44+CD62LT-bet+Ly6C+ effector (TEFF) cells that are short-lived in the absence of infection and are not derived from memory cells reactivated by secondary challenge, mediate concomitant immunity. Upon adoptive transfer and challenge, non-dividing Ly6C+ TEFF cells preferentially homed to the skin, released IFN-γ, and conferred protection as compared to CD44+CD62LLy6C effector memory or CD44+CD62L+Ly6C central memory cells. During chronic infection, Ly6C+ TEFF cells were maintained at high frequencies via reactivation of TCM and the TEFF themselves. The lack of effective vaccines for many chronic diseases may be because protection against infectious challenge requires the maintenance of pre-existing TEFF cells, and is therefore not amenable to conventional, memory inducing, vaccination strategies.  相似文献   

13.
The ovarian cancer microenvironment recruits an array of immune cells to the site of tumor growth. Within the peritoneal ascites of both humans and mice, the predominant population of tumor-infiltrating leukocytes is a CD11c+CD11b+ population variably referred to as vascular leukocytes (VLCs), tumor-associated macrophages, and immature dendritic cells. We have previously shown that these cells are critical for tumor growth because their selective elimination from the peritoneal tumor microenvironment inhibited tumor progression. However, the underlying mechanism by which this therapy was efficacious is poorly understood. Here, we use the murine ID8 ovarian tumor model to demonstrate that the tumor microenvironment induces in vivo immunosuppression of T cells and that the SR-A+ VLCs mediate this suppression. Importantly, the elimination of SR-A+ VLCs from the peritoneum of tumor-bearing mice relieves the T cell suppression. Moreover, the profound changes that VLC elimination has on the immune system are T cell-dependent because the protective antitumor effect of VLC elimination does not occur when CD8 T cells are concomitantly depleted. These results were confirmed and extended with the use of a genetic model for VLC depletion, which demonstrated that short-term therapeutic depletion of VLCs alleviates immunosuppression and allows for efficacious vaccination against model tumor antigens in tumor-bearing mice. These studies provide a mechanistic explanation for how leukocytes contribute to ovarian tumor progression and, correspondingly, how leukocyte depletion inhibits tumor growth.  相似文献   

14.

Objective

Invasive pneumococcal disease (IPD) is a leading cause of morbidity and mortality in HIV-infected African adults. CD4 T cell depletion may partially explain this high disease burden but those with relatively preserved T cell numbers are still at increased risk of IPD. This study evaluated the extent of pneumococcal-specific T cell memory dysfunction in asymptomatic HIV infection early on in the evolution of the disease.

Methods

Peripheral blood mononuclear cells were isolated from asymptomatic HIV-infected and HIV-uninfected Malawian adults and stained to characterize the underlying degree of CD4 T cell immune activation, senescence and regulation. Pneumococcal-specific T cell proliferation, IFN-γ, IL-17 production and CD154 expression was assessed using flow cytometry and ELISpot.

Results

We find that in asymptomatic HIV-infected Malawian adults, there is considerable immune disruption with an increase in activated and senescent CD4+CD38+PD-1+ and CD4+CD25highFoxp3+ Treg cells. In the context of high pneumococcal exposure and therefore immune stimulation, show a failure in pneumococcal-specific memory T cell proliferation, skewing of T cell cytokine production with preservation of interleukin-17 but decreased interferon-gamma responses, and failure of activated T cells to express the co-stimulatory molecule CD154.

Conclusion

Asymptomatic HIV-infected Malawian adults show early signs of pneumococcal- specific immune dysregulation with a shift in the balance of CD4 memory, T helper 17 cells and Treg. Together these data offer a mechanistic understanding of how antigen-specific T cell dysfunction occurs prior to T cell depletion and may explain the early susceptibility to IPD in those with relatively preserved CD4 T cell numbers.  相似文献   

15.
STEAP is a recently identified protein shown to be particularly overexpressed in prostate cancer and also present in numerous human cancer cell lines from prostate, pancreas, colon, breast, testicular, cervical, bladder and ovarian carcinoma, acute lymphocytic leukemia and Ewing sarcoma. This expression profile renders STEAP an appealing candidate for broad cancer immunotherapy. In order to investigate if STEAP is a tumor antigen that can be targeted by specific CD8+ T cells, we identified two high affinity HLA-A*0201 restricted peptides (STEAP86–94 and STEAP262–270). These peptides were immunogenic in vivo in HLA-A*0201 transgenic HHD mice. Peptide specific murine CD8 T cells recognized COS-7 cells co-transfected with HHD (HLA-A*0201) and STEAP cDNA constructs and also HLA-A*0201+ STEAP+ human tumor cells. Furthermore, STEAP86–94 and STEAP262–270 stimulated specific CD8+ T cells from HLA-A*0201+ healthy donors, and these peptide specific CD8+ T cells recognized STEAP positive human tumor cells in an HLA-A*0201-restricted manner. Importantly, STEAP86–94-specific T cells were detected and reactive in the peripheral blood mononuclear cells in NSCLC and prostate cancer patients ex vivo. These results show that STEAP can be a target of anti-tumor CD8+ T cells and that STEAP peptides can be used for a broad-spectrum-tumor immunotherapy.  相似文献   

16.
CD4+8 T lymphocytes with potent antitumor activity in vivo were obtained in peritoneal exudate cells by immunizing mice with irradiated MM48 tumor cells admixed with OK-432. These immune CD4+ T cells were used in adoptive immunotherapy for prevention of lymph node metastases after removal of the primary tumor. Complete cure of metastases was obtained by adoptive transfer of CD4+ T cells admixed with irradiated MM48 tumor cells, but not by CD4+ T cells alone. To analyze the curative effect of admixing tumor cells on the prevention of metastases, a model of 1-day tumor inoculated with macrophages was used. Administration of immune CD4+ T cells alone resulted in the regression of local tumor in more than half of the mice, although all of them eventually died of lymph node metastases. On the other hand, adoptive transfer of immune CD4+ T cells plus irradiated tumor cells resulted in the complete regression of local tumors in all the mice, which survived without any sign of metastasis. The curative effect of the immune CD4+ T cells obtained by admixing irradiated tumor cells was tumor-specific. Macrophages induced by OK-432 (tumoricidal), implanted together with tumor, assisted tumor regression more than did macrophages elicited by proteose peptone (nontumoricidal) in the same adoptive transfer system. Administration of recombinant interleukin-2 instead of stimulant tumor cells did not enhance, but rather eliminated the constitutive antitumor activity of CD4+ T cells. On the other hand, exogenous recombinant interleukin-1 was more effective in the enhancement of antitumor activity of the CD4+ T cells as compared with stimulant tumor cell administration. In this case, the activating states of macrophages at the implanted tumor site had no influence on the therapeutic efficacy. A possible role of macrophages for induction of tumor-specific cytotoxic T cells that were mediated by tumor-specific CD4+ T cells is discussed.  相似文献   

17.
Due to its critical role in NK cell differentiation and CD8+ T cell homeostasis, the importance of IL-15 is more firmly established for cytolytic effectors of the immune system than for CD4+ T cells. The increased levels of IL-15 found in several CD4+ T cell-driven (auto-) immune diseases prompted us to examine how IL-15 influences murine CD4+ T cell responses to low dose TCR-stimulation in vitro. We show that IL-15 exerts growth factor activity on both CD4+ and CD8+ T cells in a TCR-dependent and Cyclosporin A-sensitive manner. In CD4+ T cells, IL-15 augmented initial IL-2-dependent expansion and once IL-15Rα was upregulated, IL-15 sustained the TCR-induced expression of IL-2/15Rβ, supporting proliferation independently of secreted IL-2. Moreover, IL-15 counteracts CD4+ T cell suppression by a gradually expanding CD25HighCD4+ T cell subset that expresses Foxp3 and originates from CD4+CD25+ Tregs. These in vitro data suggest that IL-15 may dramatically strengthen the T cell response to suboptimal TCR-triggering by overcoming an activation threshold set by Treg that might create a risk for autoimmune pathology.  相似文献   

18.
Activation of tumor-reactive T lymphocytes is a promising approach for the prevention and treatment of patients with metastatic cancers. Strategies that activate CD8+ T cells are particularly promising because of the cytotoxicity and specificity of CD8+ T cells for tumor cells. Optimal CD8+ T cell activity requires the co-activation of CD4+ T cells, which are critical for immune memory and protection against latent metastatic disease. Therefore, we are developing “MHC II” vaccines that activate tumor-reactive CD4+ T cells. MHC II vaccines are MHC class I+ tumor cells that are transduced with costimulatory molecules and MHC II alleles syngeneic to the prospective recipient. Because the vaccine cells do not express the MHC II-associated invariant chain (Ii), we hypothesized that they will present endogenously synthesized tumor peptides that are not presented by professional Ii+ antigen presenting cells (APC) and will therefore overcome tolerance to activate CD4+ T cells. We now report that MHC II vaccines prepared from human MCF10 mammary carcinoma cells are more efficient than Ii+ APC for priming and boosting Type 1 CD4+ T cells. MHC II vaccines consistently induce greater expansion of CD4+ T cells which secrete more IFNγ and they activate an overlapping, but distinct repertoire of CD4+ T cells as measured by T cell receptor Vβ usage, compared to Ii+ APC. Therefore, the absence of Ii facilitates a robust CD4+ T cell response that includes the presentation of peptides that are presented by traditional APC, as well as peptides that are uniquely presented by the Ii vaccine cells.  相似文献   

19.
Dengue virus (DENV) is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA) fused to the DENV2 NS1 gene (pcTPANS1) induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus load (4 LD50), which was abrogated with the increase of viral dose (40 LD50). The pcTPANS1 also induced activation of CD4+ and CD8+ T cells. We detected production of IFN-γ and a cytotoxic activity by CD8+ T lymphocytes induced by this vaccine, although its contribution in the protection was not so evident when compared to CD4+ cells. Depletion of CD4+ cells in immunized mice completely abolished protection. Furthermore, transfer experiments revealed that animals receiving CD4+ T cells combined with anti-NS1 antiserum, both obtained from vaccinated mice, survived virus infection with survival rates not significantly different from pcTPANS1-immunized animals. Taken together, results showed that the protective immune response induced by the expression of NS1 antigen mediated by the pcTPANS1 requires a cooperation between CD4+ T cells and the humoral immunity.  相似文献   

20.
T cell phenotypes involved in the immune response to Chlamydia trachomatis (CT) have not been fully elucidated in humans. We evaluated differences in T cell phenotypes between CT-infected women and CT-seronegative controls and investigated changes in T cell phenotype distributions after CT treatment and their association with reinfection. We found a higher expression of T cell activation markers (CD38+HLA-DR+), T helper type 1 (Th1)- and Th2-associated effector phenotypes (CXCR3+CCR5+ and CCR4+, respectively), and T cell homing marker (CCR7) for both CD4+ and CD8+ T cells in CT-infected women. At follow-up after treatment of infected women, there were a lower proportion of CD4+ and CD8+ T cells expressing these markers. These findings suggest a dynamic interplay of CD4+ and CD8+ T cells in CT infection, and once the infection is treated, these cell markers return to basal expression levels. In women without reinfection, a significantly higher proportion of CD8+ T cells co-expressing CXCR3 with CCR5 or CCR4 at follow-up was detected compared to women with reinfection, suggesting they might play some role in adaptive immunity. Our study elucidated changes in T cell phenotypes during CT infection and after treatment, broadening our understanding of adaptive immune mechanisms in human CT infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号