首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. The capsid expands after about 10%-25% of the genome is packaged. When the head is full, the motor cuts the concatemeric DNA and dissociates from the head. Conformational changes, particularly in the portal, are thought to drive these sequential transitions. We found that the phage T4 packaging machine is highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Optical tweezers experiments show that single motors can force exogenous DNA into phage heads at the same rate as into proheads. Single molecule fluorescence measurements demonstrate that phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. These results suggest that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features probably led to the evolution of viral genomes that fit capsid volume, a strikingly common phenomenon in double-stranded DNA viruses, and will potentially allow design of a novel class of nanocapsid delivery vehicles.  相似文献   

2.
The process of phage T4 DNA injection into the host cell was studied under a fluorescent microscope, using 4',6-diamidino-2-phenylindole as a DNA-specific fluorochrome. The phage DNA injection was observed when spheroplasts were infected with the artificially contracted phage particles having a protruding core. The DNA injection was mediated by the interaction of the core tip with the cytoplasmic membrane of the spheroplast. A membrane potential was not required for the process of DNA injection. On the other hand, DNA injection upon infection by intact noncontracted phage of the intact host cell was inhibited by an energy poison. Based on these observations, together with results from previous work, a model for the T4 infection process is presented, and the role of the membrane potential in the infection process is discussed.  相似文献   

3.
Infectious DNA of bacteriophage T4   总被引:4,自引:0,他引:4  
  相似文献   

4.
5.
In double-stranded DNA bacteriophages the viral DNA is translocated into an empty prohead shell by a powerful ATP-driven motor assembled at the unique portal vertex. Terminases consisting of two to three packaging-related ATPase sites are central to the packaging mechanism. But the nature of the key translocating ATPase, stoichiometry of packaging motor, and basic mechanism of DNA encapsidation are poorly understood. A defined phage T4 packaging system consisting of only two components, proheads and large terminase protein (gp17; 70 kDa), is constructed. Using the large expanded prohead, this system packages any linear double-stranded DNA, including the 171 kb T4 DNA. The small terminase protein, gp16 (18 kDa), is not only not required but also strongly inhibitory. An ATPase activity is stimulated when proheads, gp17, and DNA are actively engaged in the DNA packaging mode. No packaging ATPase was stimulated by the N-terminal gp17-ATPase mutants, K166G (Walker A), D255E (Walker B), E256Q (catalytic carboxylate), D255E-E256D and D255E-E256Q (Walker B and catalytic carboxylate), nor could these sponsor DNA encapsidation. Experiments with the two gp17 domains, N-terminal ATPase domain and C-terminal nuclease domain, suggest that terminase association with the prohead portal and communication between the domains are essential for ATPase stimulation. These data for the first time established an energetic linkage between packaging stimulation of N-terminal ATPase and DNA translocation. A core pathway for the assembly of functional DNA translocating motor is proposed. Since the catalytic motifs of the N-terminal ATPase are highly conserved among >200 large terminase sequences analyzed, these may represent common themes in phage and herpes viral DNA translocation.  相似文献   

6.
Control of bacteriophage T4 DNA polymerase synthesis   总被引:13,自引:0,他引:13  
Analysis of sodium dodecyl sulphate/acrylamide gels of 14C-labelled proteins from phage-infected bacteria suggests the existence of a self-regulatory control mechanism in bacteriophage T4.Infection of Escherichia coli with phage T4 carrying a mutation in gene 43 (which codes for the phage DNA polymerase) results in a greatly increased rate of synthesis of the gene 43 protein. Such overproduction of defective polymerase occurs in restrictive infections with all gene 43 amber and most gene 43 temperature-sensitive mutants tested. Gene 43 protein synthesis in gene 43+ infections or increased synthesis in gene 43? infections appears to require no additional function of other phage proteins essential for DNA synthesis. Functional gene 43 protein is needed continuously to keep its own levels down to normal.  相似文献   

7.
8.
Samarendra Basu 《Biopolymers》1977,16(10):2299-2314
The degree of preferred orientation and the coiling of the deoxyribonucleic acid within phage T4 was studied by two independent techniques, namely, polarization of fluorescence and uv linear dichroism. A correlation between the two kinds of data was obtained, which indicated that a significant proportion (about 30%) of total phage DNA is aligned preferentially along the long axis of phage heads. Analyses of the data suggest that all of the phage DNA cannot be in a highly supercoiled helical configuration. A few models of the DNA arrangement in T4 have been discussed in which linear sidewise packings of DNA would be predominant and may explain the observed longitudinal orientation of intraphage DNA.  相似文献   

9.
A recombinant strain (D41) between phage T2 and T4 was isolated which possessed the T2 region of the genome between genes 32 and 39 and both the T4 genesgt + andgt + for glucosyltransferase. D41 was crossed with T4amber mutants in the genes for early functions and in some genes for late funcitions. The progeny of the crosses was examined for the frequency of theam + markers from D41. Genes 32, 60 and 39 in the T2 region of the recombinant strain were as sensitive to exclusion as those in standard-type T2. The T4 glucosylation of the DNA of these T2 genes did not protect them against partial exclusion by T4. However, genes in the region from gene 56 to 55 in the recombinant were resistent to exclusion. In standard-type T2 this region of the genome is sensitive to partial exclusion by T4. There are at least four exclusion sensitive sites in T2: one near gene 32, one near gene 60, one linked to gene 56 and one between genes 42 and 55.This investigation was carried out partially within the frame of the Association between Euratom and the University of Leiden, contract nr. 052-64-1-BIAN.  相似文献   

10.
Methods developed for isolating bacterial nucleoids were applied to bacteria infected with phage T4. The replicating pool of T4 DNA was isolated as a particle composed of condensed T4 DNA and certain RNA and protein components of the cell. The particles have a narrow sedimentation profile (weight-average s=2,500S) and have, on average, a T4 DNA content similar to that of the infected cell. Their dimensions observed via electron and fluorescence microscopy are similar to the dimensions of the intracellular DNA pool. The DNA packaging density is less than that of the isolated bacterial nucleoid but appears to be roughly similar to its state in vivo. Host-cell proteins and T4-specific proteins bound to the DNA were characterized by electrophoresis on polyacrylamide gels. The major host proteins are the RNA polymerase subunits and two envelope proteins (molecular weights, 36,000 and 31,000). Other major proteins of the host cell were absent or barely detectable. Single-strand breaks can be introduced into the DNA with gamma radiation or DNase without affecting its sedimentation rate. This and other studies of the effects of intercalated ethidium molecules have suggested that the average superhelical density of the condensed DNA is small. However, these studies also indicated that there may be a few domains in the DNA that become positively supercoiled in the presence of high concentrations of ethidium bromide. In contrast to the Escherichia coli nucleoid, the T4 DNA structure remains condensed after the RNA and protein components have been removed (although there may be slight relaxation in the state of condensation under these conditions).  相似文献   

11.
DNA injection by alkylated and nonalkylated bacteriophage T7 has been analyzed by a physical method which involved Southern hybridization to identify noninjected regions of DNA. Treatment of phage with methyl methanesulfonate reduced the amount of DNA injected into wild-type Escherichia coli cells. This reduction was correlated with a decreased injection of DNA segments located on the right-hand third of the T7 genome. An essentially identical injection defect was observed when alkylated phage infected E. coli mutant cells unable to repair 3-methyladenine. Furthermore, untreated phage particles were discovered to be naturally injection-defective. Some injected all their DNA except those segments located in the rightmost 15% of the T7 genome, while other injected no DNA at all. In the presence of rifampicin, untreated phages injected only segments from the left end of the genome. These results provide direct physical evidence that T7 DNA injection is strictly unidirectional, starting from the left end of the T7 genome. The injection defect quantified here for alkylated phage is probably partially, if not totally, responsible for phage inactivation, when that inactivation is measured in wild-type E. coli cells. Since alkylated phage injected the same DNA sequences into both wild-type and repair-deficient cells, we conclude that DNA injection is independent of the host-cell's capacity for repair of 3-methyladenine residues.  相似文献   

12.
Isolation of bacteriophage T4 DNA polymerase mutator mutants   总被引:5,自引:0,他引:5  
More than 20 new bacteriophage T4 DNA polymerase mutants have been isolated by a procedure designed to select mutants with high spontaneous mutation rates. Some of the mutants produce the highest mutation frequencies that have been observed in T4 thus far. The design of the selection procedure allows for the isolation of mutator mutants that preferentially induce certain types of replication errors, and some of the mutator mutants have mutational specificities different from wild-type. The new mutants are clustered at just two sites in the DNA polymerase gene, and this result confirms an earlier observation.  相似文献   

13.
14.
Stohr BA  Kreuzer KN 《Genetics》2001,158(1):19-28
Type II topoisomerase inhibitors are used to treat both tumors and bacterial infections. These inhibitors stabilize covalent DNA-topoisomerase cleavage complexes that ultimately cause lethal DNA damage. A functional recombinational repair apparatus decreases sensitivity to these drugs, suggesting that topoisomerase-mediated DNA damage is amenable to such repair. Using a bacteriophage T4 model system, we have developed a novel in vivo plasmid-based assay that allows physical analysis of the repair products from one particular topoisomerase cleavage site. We show that the antitumor agent 4'-(9-acridinylamino)methanesulphon-m-anisidide (m-AMSA) stabilizes the T4 type II topoisomerase at the strong topoisomerase cleavage site on the plasmid, thereby stimulating recombinational repair. The resulting m-AMSA-dependent repair products do not form in the absence of functional topoisomerase and appear at lower drug concentrations with a drug-hypersensitive topoisomerase mutant. The appearance of repair products requires that the plasmid contain a T4 origin of replication. Finally, genetic analyses demonstrate that repair product formation is absolutely dependent on genes 32 and 46, largely dependent on genes uvsX and uvsY, and only partly dependent on gene 49. Very similar genetic requirements are observed for repair of endonuclease-generated double-strand breaks, suggesting mechanistic similarity between the two repair pathways.  相似文献   

15.
Molecular cloning of fragments of bacteriophage T4 DNA   总被引:27,自引:0,他引:27  
Summary Non-glucosylated T4 DNA was digested with R. EcoRI and the resulting fragments covalently joined to vectors. The genetic content of each -T4 hybrid was determined by marker-rescue tests. The isolation of many recombinants containing partialdigestion products of T4 DNA provided the overlapping sequences necessary to order fragments within the T4 genome. The present analyses include parts of the early region between genes 42 and 46, and much of the late region between genes 50 and 29. T4 cytosine-DNA digested to completion by R.EcoRI was used to identify the fragments of DNA within the -T4 recombinants. The T4 cytosine-DNA was also sensitive to R.HindIII and R.Xho but not to R.BamH1.  相似文献   

16.
DNA-adenine methylation at certain GATC sites plays a pivotal role in bacterial and phage gene expression as well as bacterial virulence. We report here the crystal structures of the bacteriophage T4Dam DNA adenine methyltransferase (MTase) in a binary complex with the methyl-donor product S-adenosyl-L-homocysteine (AdoHcy) and in a ternary complex with a synthetic 12-bp DNA duplex and AdoHcy. T4Dam contains two domains: a seven-stranded catalytic domain that harbors the binding site for AdoHcy and a DNA binding domain consisting of a five-helix bundle and a beta-hairpin that is conserved in the family of GATC-related MTase orthologs. Unexpectedly, the sequence-specific T4Dam bound to DNA in a nonspecific mode that contained two Dam monomers per synthetic duplex, even though the DNA contains a single GATC site. The ternary structure provides a rare snapshot of an enzyme poised for linear diffusion along the DNA.  相似文献   

17.
Cytosine-containing DNA of bacteriophage T4 was digested with three restriction endonucleases: endo R · EcoRI, endo R · HindIII and endo R · PstI, and each digestion ligated with a cloning vector to generate three independent collections of T4 DNA-containing clones. The T4 clones were screened for their T4 genetic content by recombinational analysis using amber mutants of T4. Complementation of T4 amber mutant growth and labeling of proteins in vivo provided evidence of expression of specific (g30, g39, g44 and g46) cloned T4 genes.  相似文献   

18.
The termini of Escherichia coli phage T7 DNA have been labeled with 32P by the polynucleotide kinase reaction. The DNA was fragmented, denatured, and annealed to denatured T7 DNA embedded in agar; elution was measured as a function of temperature. The terminal fragments were eluted from the gel at temperatures well below that of the bulk of the DNA, suggesting that these regions have a very high adenine-plus-thymine content. However, when DNA doubly labeled throughout at random by growth of the phage in [3H]thymidine and 32PO4, was denatured, annealed to the gel, and eluted as a function of temperature, the material eluting from the gel in this low-temperature range was about 50% adenine and thymine. Hence the melting behavior of the terminal fragments is not a result of a high adenine plus thymine content. By electrophoretic analysis of exonucleolytic digests of the T7 DNA it was shown that no unusual bases were present. It is suggested that the low thermal stability of the annealed terminal fragments is a consequence of the high guanine·cytosine regions being unavailable for hybridization, possibly because they are involved in intra-strand hydrogen bonding.  相似文献   

19.
The site specificity of bacteriophage T4-induced type II DNA topoisomerase action on double-stranded DNA has been explored by studying the sites where DNA cleavages are induced by the enzyme. Oxolinic acid addition increases the frequency at which phi X174 duplex DNA is cut by the enzyme by about 100-fold, to the point where nearly every topoisomerase molecule causes a double-stranded DNA cleavage event. The effect of oxolinic acid on the enzyme is very similar to its effect on another type II DNA topoisomerase, the Escherichia coli DNA gyrase. A filter-binding method was developed that allows efficient purification of topoisomerase-cleaved DNA fragments by selecting for the covalent attachment of this DNA to the enzyme. Using this method, T4 topoisomerase recognition of mutant cytosine-containing T4 DNA was found to be relatively nonspecific, whereas quite specific recognition sites were observed on native T4 DNA, which contains glucosylated hydroxymethylcytosine residues. The increased specificity of native T4 DNA recognition seems to be due entirely to the glucose modification. In contrast, E. coli DNA gyrase shows a high level of specificity for both the mutant cytosine-containing DNA and native T4 DNA, recognizing about five strong cleavage sites on both substrates. An unexpected feature of DNA recognition by the T4 topoisomerase is that the addition of the cofactor ATP strongly stimulates the topoisomerase-induced cleavage of native T4 DNA, but has only a slight effect on cleavage of cytosine-containing T4 DNA.  相似文献   

20.
M C Kricker  K R Tindall 《Gene》1989,85(1):199-204
We present a simple and convenient protocol for the direct sequencing of bacteriophage T4 genomic DNA. The method utilizes the thermostable DNA polymerase from Thermus aquaticus (Taq) and 32P-end-labeled oligodeoxyribonucleotide primers to produce extension products that allow the analysis of at least 200 nucleotides (nt) on a single sequencing gel. Single-nt changes in the template were easily detectable following an overnight exposure of the autoradiograms. Comparison of sequences from fully modified T4 DNA containing glucosylated hydroxymethyldeoxycytosine or from templates containing cytosine showed little difference in sequence clarity. These techniques considerably simplify the molecular analysis of T-even bacteriophages and should be compatible with automated sequencing methods which employ 5'-end-labeled primers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号