首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
 The potential of DNA markers such as microsatellites, minisatellites and RAPDs was investigated in pearl millet [Pennisetum glaucum (L.) R. Br] with respect to their abundance and variability. Southern analysis, using 22 different di-, tri-, tetra- and penta-oligonucleotide probes and five minisatellite probes, identified (GATA)4 as the most useful probe for the detection of multiple polymorphic fragments among pearl millet cultivars and landraces from India. The clustering patterns of pearl millet cultivars and landraces based on (GATA)4 and RAPD (randomly amplified polymorphic DNA) markers differed. The landraces, representing eight states in India, could not be grouped based on their geographical distribution with the DNA markers. RAPD analysis revealed a high degree of genetic diversity among the cultivars and landraces employed in this study. The probability of an identical match by chance for any two genotypes using (GATA)4 and RAPDs was 3.02×10-20 for cultivars and 5.2×10-9 for landraces. The microsatellite (GATA)4 and RAPDs provide useful tools for genotype identification and for the assessment of genetic relationships in pearl millet. Received: 19 October 1997 / Accepted: 9 December 1997  相似文献   

2.
Microsatellites have many desirable marker properties. There has been no report of the development and utilization of microsatellite markers in oat. The objectives of the present study were to construct oat microsatellite-enriched libraries, to isolate microsatellite sequences and evaluate their level of polymorphism in Avena species and oat cultivars. One hundred clones were isolated and sequenced from three oat microsatellite-libraries enriched for either (AC/TG) n , (AG/TC) n or (AAG/TTC) n repeats. Seventy eight clones contained microsatellites. A database search showed that 42% of the microsatellite flanking sequences shared significant homology with various repetitive elements. Alu and retrotransposon sequences were the two largest groups associated with the microsatellites. Forty four primer sets were used to amplify the DNA from 12 Avena species and 20 Avena sativa cultivars. Sixty two percent of the primers revealed polymorphism among the Avena species, but only 36% among the cultivars. In the cultivars, the microsatellites associated with repetitive elements were less polymorphic than those not associated with repetitive elements. Only 25% of the microsatellites associated with repetitive elements were polymorphic, while 46% of the microsatellites not associated with repetitive elements showed polymorphism in the cultivars. An average of four alleles with a polymorphism information content (PIC) of 0.57 per primer set was detected among the Avena species, and 3.8 alleles with a PIC of 0.55 among the cultivars. In addition, 54 barley microsatellite primers were tested in Avena species and 26% of the primers amplified microsatellites from oat. Using microsatellite polymorphisms, dendrograms were constructed showing phylogenetic relationships among Avena species and genetic relationships among oat cultivars. Received: 1 November 1999 / Accepted: 14 April 2000  相似文献   

3.
Hybrid rice has contributed significantly to the dramatic increase of rice production in the world. Despite this, little attention has been given to studying the genetic basis of heterosis in rice. In this paper, we report a diallel analysis of heterosis using two classes of molecular markers: restriction fragment length polymorphisms, (RFLPs) and microsatellites. Eight lines, which represent a significant portion of hybrid rice germ plasm, were crossed in all possible pairs, and the F1s were evaluated for yield and yield component traits in a replicated field trial. The parental lines were surveyed for polymorphisms with 117 RFLP probes and ten microsatellites, resulting in a total of 76 polymorphic markers well-spaced in the rice RFLP map. The results indicated that high level heterosis is common among these crosses: more than 100% midparent and 40% better-parent heterosis were observed in many F1s, including some crosses between maintainer lines. Heterosis was found to be much higher for yield than for yield component traits, which fits a multiplicative model almost perfectly. Between 16 and 30 marker loci (positive markers) detected highly significant effects on yield or its component traits. Heterozygosity was significantly correlated with several attributes of performance and heterosis. Correlations based on positive markers (specific heterozygosity) were large for midparent heterosis of yield and seeds/panicle and also for F1 kernel weight. These large correlations may have practical utility for predicting heterosis.  相似文献   

4.
Microsatellite markers targeting (GATA) n motifs are known to be highly polymorphic. Genome-wide development of such markers has not been reported in sorghum. The main objective of this study was to identify Class I microsatellites with (GATA) n motifs in the sorghum genome through in silico analysis and assess their potential as molecular markers. The study identified a total of 128 such motifs, of which 14, 16 and 98 motifs were present in the genic, upstream and non-genic regions, respectively. The majority of the (GATA) n motifs were found in the non-genic regions of the genome while 23.44 % of them were found within the genes and upstream of genes. About 110 PCR-based markers were developed targeting these microsatellites and 50 of them distributed across the genome were validated in 24 diverse sorghum genotypes representing different racial groups. Thirty-eight markers were polymorphic, with average polymorphism information content value of 0.69, and the sorghum genotypes could be grouped into two major clusters. These markers with robust amplification combined with good allelic diversity represent a new set of microsatellite markers in sorghum reported for the first time that will be highly useful for various genetics and molecular breeding applications.  相似文献   

5.
Paucity of polymorphic molecular markers in chickpea (Cicer arietinum L.) has been a major limitation in the improvement of this important legume. Hence, in an attempt to develop sequence-tagged microsatellite sites (STMS) markers from chickpea, a microsatellite enriched library from the C. arietinum cv. Pusa362 nuclear genome was constructed for the identification of (CA/GT) n and (CT/GA) n microsatellite motifs. A total of 92 new microsatellites were identified, of which 74 functional STMS primer pairs were developed. These markers were validated using 9 chickpea and one C. reticulatum accession. Of the STMS markers developed, 25 polymorphic markers were used to analyze the intraspecific genetic diversity within 36 geographically diverse chickpea accessions. The 25 primer pairs amplified single loci producing a minimum of 2 and maximum of 11 alleles. A total of 159 alleles were detected with an average of 6.4 alleles per locus. The observed and expected heterozygosity values averaged 0.32 (0.08–0.91) and 0.74 (0.23–0.89) respectively. The UPGMA based dendrogram was able to distinguish all the accessions except two accessions from Afghanistan establishing that microsatellites could successfully detect intraspecific genetic diversity in chickpea. Further, cloning and sequencing of size variant alleles at two microsatellite loci revealed that the variable numbers of AG repeats in different alleles were the major source of polymorphism. Point mutations were found to occur both within and immediately upstream of the long tracts of perfect repeats, thereby bringing about a conversion of perfect motifs into imperfect or compound motifs. Such events possibly occurred in order to limit the expansion of microsatellites and also lead to the birth of new microsatellites. The microsatellite markers developed in this study will be useful for genetic diversity analysis, linkage map construction as well as for depicting intraspecific microsatellite evolution.  相似文献   

6.
Summary Twenty-eight diallel trials over 8 years and two locations were analysed to estimate genetic variances for agronomic characters of chickpea (Cicer arietinum L.). The data were analysed according to Method 4 and Model I of Griffing (1956). Days to flowering, plant height, and seed size were found to be predominantly under additive inheritance and were highly predictable. Both additive and non-additive genetic components were important for seed yield, number of branches, pods per plant, and seeds per pod. Although both general combining ability (gca) and specific combining ability (sca) varied significantly with generation, components of gca mean squares were invariably much larger than gca x generation interaction components, indicating that either the F1 or the F2 generation can be used to estimate the gca components effectively. Combined diallel analysis of F2s over locations revealed the importance of combining ability x location interactions and emphasized the need for testing over more than one location for the precise estimation of combining ability. The implications of these findings and those reported earlier in the literature on the breeding strategies/methods for the genetic improvement of agronomic characters in chickpea are discussed.ICRISAT journal article no. 1199  相似文献   

7.
The use of microsatellite DNA markers for soybean genotype identification   总被引:36,自引:0,他引:36  
Conventional morphological and pigementation traits, as well as disease resistance, have been used to distinguish the uniqueness of new soybean cultivars for purposes of plant variety protection. With increasing numbers of cultivars and a finite number of conventional characters, it has become apparent that such traits will not suffice to establish uniqueness. The objective of this work was to provide an initial evaluation of microsatellite or simple-sequence-repeat (SSR) DNA markers to develop unique DNA profiles of soybean genotypes. Microsatellites are DNA sequences such as (AT) n /(TA) n and (ATT) n /(TAA) n that are composed of tandemly repeated 2–5-basepair DNA core sequences. The DNA sequences flanking microsatellites are generally conserved allowing the selection of polymerase chain reaction (PCR) primers that will amplify the intervening SSR. Variation in the number of tandem repeats, n, results in PCR product length differences. The SSR alleles present at three (AT) n /(TA) n and four (ATT) n /(TAA) n loci were determined in each of 96 diverse soybean genotypes. Between 11 and 26 alleles were found at each of the seven loci. Only two genotypes had identical SSR allelic profiles and these had very similar pedigrees. The gene diversity for the seven markers averaged 0.87 for all 96 genotypes and 0.74 for a subset of 26 North American cultivars. These are much higher than soybean gene diversity values obtained using RFLP markers, and are similar to the average values obtained for human microsatellite markers. SSR markers provide an excellent complement to the conventional markers that are currently used to characterize soybean genotypes.  相似文献   

8.
Seeds, i.e. embryos, may be genetically different from either of their parents and moreover may express their own heterosis. The objective was to genetically analyse embryo heterosis for their own weight (i.e. seed weight) in comparison with their seedlings’ heterosis, taking the large-seeded crop (Vicia faba L.) as model. A specific diallel mating scheme was used, based on four parental lines, creating 76 seed genotypes in generations P, F1, F2 and BC. Mature seed weight was assessed for these embryo genotypes in 3 years at one German location, and young plant biomass yield of seedlings emerging from these seeds in two greenhouse experiments. The quantitative genetic analysis showed an average of 10.6% mid-parent heterosis for mature seed weight and 14.5% mid-parent heterosis for juvenile biomass. In both traits, the embryos contributed markedly and significantly via their own genes to the genetic variation. For mature embryo weight heterosis, apparently the parental difference in seed weight was decisive, whereas for juvenile biomass heterosis, genetic unrelatedness of parents had priority.  相似文献   

9.
Eight polymorphic tetrarepeat (GATA)n, microsatellite loci were isolated from a babbler, Hwamei (Garrulax canorus canorus). We evaluated the polymorphism of these microsatellite loci by genotyping 36–48 individuals from the Asian mainland. The number of alleles for each locus ranged from eight to 29. The heterozygosity was between 0.587 and 0.978. Except for one locus, genotype frequencies of these microsatellites did not significantly deviate from the Hardy–Weinberg expectation. These markers should be useful for monitoring potential hybridization between different Hwamei subspecies and provide new insights into the mating system and geographical differentiation of these birds.  相似文献   

10.
Ascochyta blight [Ascochyta rabiei (Pass.) Lab.] is the most destructive disease of chickpea (Cicer arietinum L.), but it can be managed effectively by the use of resistant cultivars. Therefore, a breeding programme was initiated during 1977–78 at ICARDA, Syria, to breed blight-resistant, high-yielding chickpeas with other desirable agronomic traits. Crosses were made in main season at Tel Hadya, Syria, and the F1s were grown in the off season at Terbol, Lebanon. The F2, F4 and F5 generations were grown in a blight nursery in the main season where blight epidemic was artificially created. The plants and progenies were scored for blight resistance and other traits. The F3 and F6 generations were grown in the off season under normal day length to eliminate late-maturing plants. The pedigree method of breeding was followed initially, but was later replaced by the F4-derived family method. The yield assessment began with F7 lines, first at ICARDA sites and later internationally. A total of 1584 ascochyta blight-resistant chickpea lines were developed with a range of maturity, plant height, and seed size not previously available to growers in the blight-endemic areas in the Mediterranean region. These included 92 lines resistant to six races of the ascochyta pathogen, and 15 large-seeded and 28 early maturity lines. New cultivars produced 33% more seed yield than the original resistant sources. The yield of chickpea declined by 340 kg ha-1, with an increase in blight severity by one class on a 1–9 scale, reaching zero yield with the 8 and 9 classes. Development of blight-resistant lines made the introduction of winter sowing possible in the Mediterranean region with the prospect of doubling chickpea production. Twenty three cultivars have been released so far in 11 countries.Joint contribution from ICARDA and ICRISAT. ICRISAT Journal Article no. JA 1886.  相似文献   

11.
Summary The Brassica napus genome has been investigated by DNA fingerprinting with six synthetic oligonucleotide probes complementary to simple repetitive sequences, namely (GATA)4, (GACA)4, (GGAT)4, (CA)8, (CT)8 and (GTG)5. While all sequence motifs were found to be present in the B. napus genome, their organization and abundance varied considerably. Among the investigated probes, (GATA)4 revealed the highest level of intraspecific polymorphism and distinguishes not only between cultivars but even between different individuals belonging to the same cultivar. In contrast, (GTG)5, (GACA)4 and (GGAT)4 produced relatively homogeneous fingerprint patterns throughout different cultivars, while hybridization to (CT)8 and (CA)8 resulted in only a few weak bands superimposed on a smear. The isoschizomeric pair Hpa II and Msp I revealed the presence of methylated cytosines in the vicinity of (GATA)m repeats. The applicability of simple repetitive sequence polymorphisms as molecular markers for Brassica species is discussed.  相似文献   

12.
A mini‐dome bioassay was developed to study pathogenicity of Ascochyta rabiei and relative resistance of chickpea (Cicer arietanium). It was determined that the best condition for assaying pathogenicity of A. rabiei was to use 2 × 105 spores/ml as inoculum and to maintain a leaf wetness period of 24 h under mini‐domes at a temperature between 16 and 22°C. This mini‐dome pathogenicity assay was used to determine relative resistance of six chickpea cultivars (cvs) to isolates of two pathotypes of A. rabiei. Grafting was employed to detect any translocated factors produced in the chickpea plant that mediate disease response, which could help elucidate possible resistance mechanisms to Ascochyta blight. The six chickpea cv. were grafted in all possible scion–rootstock combinations, and then inoculated with isolates of two pathotypes of A. rabiei using the mini‐dome technique. Results showed that self‐grafted‐resistant plants remained resistant and self‐grafted‐susceptible plants stayed susceptible, indicating the grafting procedure did not alter host response to infection by A. rabiei. Susceptible scions always exhibited high and similar levels of disease severity regardless of rootstock genotypes, and resistant scions always showed low and similar levels of disease severity when they were grafted onto any of the six rootstock genotypes. Orthogonal contrasts showed that scion genotypes determined disease phenotype, and that rootstock genotypes had no contribution to disease phenotype of the scions. The pathogenicity assay did not detect any translocated disease‐mediating agents responsible for susceptibility or resistance in chickpea. Disease phenotypes of Ascochyta blight of chickpea were conditioned locally by scion genotypes.  相似文献   

13.
Predicting heterosis and F1 performance from the parental generation could largely enhance the efficiency of breeding hybrid or synthetic cultivars. This study was undertaken to determine the relationship between parental distances estimated from phenotypic traits or molecular markers with heterosis, F1 performance and general combining ability (GCA) in Ethiopian mustard (Brassica carinata). Nine inbred lines representing seven different geographic regions of Ethiopia were crossed in half-diallel. The nine parents along with their 36 F1s were evaluated in a replicated field trail at three locations in Ethiopia. Distances among the parents were calculated from 14 phenotypic traits (Euclidean distance, ED) and 182 random amplified polymorphic DNA (RAPD) markers (Jaccard’s distances, JD), and correlated with heterosis, F1 performance and GCA sum of parents (GCAsum). The correlation between phenotypic and molecular distances was low (r=0.34, P≤0.05). Parents with low molecular distance also had low phenotypic distance, but parents with high molecular distance had either high, intermediate or low phenotypic distance. Phenotypic distance was highly significantly correlated with mid-parent heterosis (r=0.53), F1 performance (r=0.61) and GCA (r=0.79) for seed yield. Phenotypic distance was also positively correlated with (1) heterosis, F1 performance and GCA for plant height and seeds plant−1, (2) heterosis for number of pods plant−1, and (3) F1 performance for 1,000 seed weight. Molecular distance was correlated with GCAsum (r=0.36, P≤0.05) but not significantly with heterosis and F1 performance for seed yield. For each parent a mean distance was calculated by averaging the distances to the eight other parents. Likewise, mean heterosis was estimated by averaging the heterosis obtained when each parent is crossed with the other eight. For seed yield, both mean ED and JD were significantly correlated with GCA (r=0.90, P≤0.01 for ED and r=0.68, P≤0.05 for JD) and mean heterosis (r=0.79, P≤0.05 for ED and r=0.77, P≤0.05 for JD). In conclusion, parental distances estimated from phenotypic traits better predicted heterosis, F1 performance and GCA than distances estimated from RAPD markers. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
A size-selected genomic library comprising 280,000 colonies and representing ≈18% of the chickpea genome, was screened for (GA)n, (GAA)n and (TAA)n microsatellite-containing clones, of which 389 were sequenced. The majority (∼75%) contained perfect repeats; interrupted, interrupted compound and compound repeats were only present in 6%–9% of cases. (TAA)-microsatellites contained the longest repeats, with unit numbers from 9 to 131. For 218 loci primers could be designed and used for the detection of microsatellite length polymorphisms in six chickpea breeding cultivars, as well as in C. reticulatum and C. echinospermum, wild, intercrossable relatives of chickpea. A total of 174 primer pairs gave interpretable banding patterns, 137 (79%) of which revealed at least two alleles on native polyacrylamide gels. A total of 120 sequence-tagged microsatellite site (STMS) markers were genetically mapped in 90 recombinant inbred lines from an inter-species cross between C. reticulatum and the chickpea cultivar ICC 4958. Markers could be arranged in 11 linkage groups (at a LOD score of 4) covering 613 cM. Clustering as well as random distribution of loci was observed. Segregation of 46 markers (39%) deviated significantly (P ≥ 0.05) from the expected 1:1 ratio. The majority of these loci (73%) were located in three distinct regions of the genome. The present STMS marker map represents the most advanced co-dominant DNA marker map of the chickpea genome. Received: 14 January 1999 / Accepted: 29 April 1999  相似文献   

15.
The main effort of wheat breeder is the detection of genes and to merge them in a particular genotype using most suitable combination. Five Egyptian cultivars of bread wheat (Triticum aestivum L.) were crossed in a half diallel mating design to produce 10 crosses. The genetic potential of embryogenic callus (EC%), plant regeneration (RGP%) response and its association with heading date (HD) and grain yield per plant (GY/P) were investigated. The results showed that GY/P was significantly and positively correlated with EC% and RGP%. The combining ability analysis showed that the magnitudes of general combining ability (GCA) were higher than those of specific combining ability (SCA) for both tissue culture response and agronomic traits. The promising crosses which exhibited desirable SCA effects, showed also high useful heterosis for all studied traits. The magnitudes of additive genetic variance (σ2A) were larger than those of non-additive ones (σ2D) for all studied traits except for number of days to heading. The estimates of narrow sense heritability were 84.56%, 82.13%, 43.46% and 70.28% for the percentage of EC%, RGP%, HD and GY/P, respectively. The genetic similarity percents based on RAPD markers ranged from 76% to 93% between the cultivars. The UPGMA cluster analysis revealed that the cultivars could be divided into two main clusters. The range of Euclidean distances based on morphological characters among the cultivars was relatively wide (4.37–27.87), indicating relatively high amount of phenotypic variation. A significant positive correlation between Euclidean distance and RAPD distance (0.727) was found.  相似文献   

16.
A genomic cosmid library was used to develop seven highly polymorphic microsatellite markers for the Mexican spotted owl (Strix occidentalis lucida). These are the first reported microsatellite markers derived from this species. The cloned and sequenced repeat motifs include a triplet repeat of (AAT)n, two tetranucleotide repeats of (GATA)n, a tetranucleotide repeat of (ATCC)n, a compound repeat of (GA)n(GATA)n and the two pentanucleotide repeats (AGAAT)n and (ATTTT)n. The microsatellites described represent six presumably independent loci with the two pentanucleotide repeats having originated from a single cosmid. Primer pairs allow locus‐specific amplification of each marker from Mexican spotted owl genomic DNA.  相似文献   

17.
 The poor definition of variation in the ascochyta blight fungus (Ascochyta rabiei) has historically hindered breeding for resistance to the chickpea (Cicer arietinum L.) blight disease in West Asia and North Africa. We have employed 14 RAPD markers and an oligonucleotide probe complementary to the microsatellite sequence (GATA)4 to construct a genotype-specific DNA fragment profile from periodically sampled Syrian field isolates of this fungus. By using conventional pathogenicity tests and genome analysis with RAPD and microsatellite markers, we demonstrated that the DNA markers distinguish variability within and among the major pathotypes of A. rabiei and resolved each pathotypes into several genotypes. The genetic diversity estimate based on DNA marker analysis within pathotypes was highest for the least-aggressive pathotype (pathotype I), followed by the aggressive (pathotype II) and the most-aggressive pathotype (pathotype III). The pair-wise genetic distance estimated for all the isolates varied from 0.00 to 0.39, indicating a range from a clonal to a diverse relationship. On the basis of genome analysis, and information on the spatial and temporal distribution of the pathogen, a general picture of A. rabiei evolution in Syria is proposed. Received: 10 January 1998 / Accepted: 23 January 1998  相似文献   

18.
Biodiversity information in available germplasm is very useful for the success of any breeding program. To establish genetic diversity among 44 genotypes of chickpea comprising cultigen, landraces, internationally developed improved lines and wild relatives, genetic distances were evaluated using 19 simple sequence repeat markers with 100 marker loci. Estimation of the number of alleles per locus (n a), the effective allele number (n e), and Wright fixation index F were 6.25, 3.67, and 0.44, respectively. Polymorphism information content values ranged from 0.84 (locus NCPGR6 and TA135) to 0.44 (locus NCPGR7) with an average of 0.68. Dice’s coefficient similarity matrix for studied chickpea genotypes varied from 0.07 to 1.0 indicating a broader genetic base among genotypes studied. The highest similarity, 1.0, was observed between genotypes Sel 96TH11484 and Sel 96TH11485; while, the lowest, 0.07, was observed between genotypes Sel 95TH1716 and Azad. Based on the UPGMA clustering method, all genotypes were clustered in eight groups, which indicated the probable origin and region similarity of landraces and local Iran landraces over the other cultivars and wild species. It also represents a wide diversity among available germplasm. Analysis of molecular variance revealed that 41% of the total variance was due to differences among groups while 59% was due to differences within groups. The results of principal coordinate analysis approximately corresponded to those obtained through cluster analysis. Genetic variation detected in this study can be useful for selective breeding for specific traits and in enhancing the genetic base of breeding programs.  相似文献   

19.
We report the sequence and variability parameters of 16 microsatellite primer pairs obtained from two mango (Mangifera indica L.) genomic libraries after digestion of DNA of the cultivar Tommy Atkins with HaeIII and RsaI and enrichment in CT repeats. Although no significant differences were recorded between the two libraries in the informativeness of the markers obtained, the RsaI library was shown to be more useful than the HaeIII taking into account the efficiency of the library and the feasibility of clone sequencing. The polymorphism revealed by those microsatellites was evaluated in a collection of 28 mango cultivars of different origins. A total of 88 fragments were detected with the 16 simple sequence repeats (SSRs) with an average of 5.5 bands/SSR. Two primer pairs amplified more than a single locus. The mean expected and observed heterozygosities over the 14 single-locus SSRs averaged 0.65 and 0.69 respectively. The total value for the probability of identity was 2.74 × 10−9. The SSRs studied allowed the unambiguous identification of all the mango genotypes studied and this discrimination can be carried out with just three selected microsatellites. UPGMA cluster analysis and Principal coordinates analysis group the genotypes according to their origin and their classification as monoembryonic or polyembryonic types reflecting the pedigree of the cultivars and the movement of mango germplasm. The results demonstrate the usefulness of microsatellites for studies on identification, variability, germplasm conservation, domestication and movement of germplasm in mango.  相似文献   

20.
Abstract

The effects of exogenous silicon (Si) on leaf relative water content (RWC), and the growth, Si concentrations, lipid peroxidation (MDA), lipoxygenase (LOX) activity, proline and H2O2 accumulation, non-enzymatic antioxidant activity (AA) and the activity of some antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX) in shoots of ten chickpea cultivars grown under drought were investigated. Drought stress decreased the growth of all the cultivars while applied Si improved the growth at least five of the 10 chickpea cultivars. Silicon applied to the soil at 100 mg kg?1 significantly increased Si concentrations of the cultivars and counteracted the deleterious effects of drought in 5 of the ten chickpea cultivars by increasing their RWC. In most cultivars tested H2O2, proline and MDA content and LOX activity were increased by drought whereas application of Si decreased their levels. APX activity was increased by drought but it was depressed by Si. In general, SOD and CAT activities of the cultivars were decreased by drought. Depending on cultivars, the CAT activity was decreased, and increased or unchanged in response to applied Si, while the SOD activity of the cultivars increased or unchanged by Si. The non-enzymatic antioxidant activity of the cultivars was also increased by Si. These observations implied an essential role for Si in minimizing drought stress-induced limitation of the growth and oxidative membrane damage in chickpea plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号