首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations in Hox gene expression patterns have been implicated in both large and small-scale morphological evolution. An improved understanding of these changes requires a detailed understanding of Hox gene cis-regulatory function and evolution. cis-regulatory evolution of the Hox gene Ultrabithorax (Ubx) has been shown to contribute to evolution of trichome patterns on the posterior second femur (T2p) of Drosophila species. As a step toward determining how this function of Ubx has evolved, we performed a series of experiments to clarify the role of Ubx in patterning femurs and to identify the cis-regulatory regions of Ubx that drive expression in T2p. We first performed clonal analysis to further define Ubx function in patterning bristle and trichome patterns in the legs. We found that low levels of Ubx expression are sufficient to repress an eighth bristle row on the posterior second and third femurs, whereas higher levels of expression are required to promote the development and migration of other bristles on the third femur and to repress trichomes. We then tested the hypothesis that the evolutionary difference in T2p trichome patterns due to Ubx was caused by a change in the global cis-regulation of Ubx expression. We found no evidence to support this view, suggesting that the evolved difference in Ubx function reflects evolution of a leg-specific enhancer. We then searched for the regulatory regions of the Ubx locus that drive expression in the second and third femur by assaying all existing regulatory mutations of the Ubx locus and new deficiencies in the large intron of Ubx that we generated by P-element-induced male recombination. We found that two enhancer regions previously known to regulate Ubx expression in the legs, abx and pbx, are required for Ubx expression in the third femur, but that they do not contribute to pupal expression of Ubx in the second femur. This analysis allowed us to rule out at least 100 kb of DNA in and around the Ubx locus as containing a T2p-specific enhancer. We then surveyed an additional approximately 30 kb using enhancer constructs. None of these enhancer constructs produced an expression pattern similar to Ubx expression in T2p. Thus, after surveying over 95% of the Ubx locus, we have not been able to localize a T2p-specific enhancer. While the enhancer could reside within the small regions we have not surveyed, it is also possible that the enhancer is structurally complex and/or acts only within its native genomic context.  相似文献   

2.
The structure of the Ultrabithorax promoter of Drosophila melanogaster   总被引:14,自引:10,他引:4       下载免费PDF全文
Saari G  Bienz M 《The EMBO journal》1987,6(6):1775-1779
  相似文献   

3.
Gibson G  Wemple M  van Helden S 《Genetics》1999,151(3):1081-1091
Introgression of homeotic mutations into wild-type genetic backgrounds results in a wide variety of phenotypes and implies that major effect modifiers of extreme phenotypes are not uncommon in natural populations of Drosophila. A composite interval mapping procedure was used to demonstrate that one major effect locus accounts for three-quarters of the variance for haltere to wing margin transformation in Ultrabithorax flies, yet has no obvious effect on wild-type development. Several other genetic backgrounds result in enlargement of the haltere significantly beyond the normal range of haploinsufficient phenotypes, suggesting genetic variation in cofactors that mediate homeotic protein function. Introgression of Antennapedia produces lines with heritable phenotypes ranging from almost complete suppression to perfect antennal leg formation, as well as transformations that are restricted to either the distal or proximal portion of the appendage. It is argued that the existence of "potential" variance, which is genetic variation whose effects are not observable in wild-type individuals, is a prerequisite for the uncoupling of genetic from phenotypic divergence.  相似文献   

4.
Mutations in the homeotic gene, Ultrabithorax (Ubx), result in the transformation of the third thoracic (T3) segment into the second thoracic (T2) segment. Although it has been well established that these mutations have striking effects on adult epidermal structures in T3, the effect of these mutations on the adult musculature has been controversial. In this study, a series of Ubx regulatory mutations, anterobithorax, bithorax, postbithorax, and bithoraxoid, as well as combinations of these alleles were used to reevaluate the role of Ubx in the patterning of the T3 musculature. Homeotic indirect and direct flight muscles (IFMs and DFMs) were identified in the transformed T3 segment of all alleles and allelic combinations with the exception of postbithorax. We critically evaluated the pattern and amount of these muscles and found that while the amount and/or quality of homeotic IFMs increased, the amount of homeotic DFMs did not vary significantly as the severity of the ectodermal transformation increased. Because Ubx is not expressed in the adult mesoderm of T3, these results suggest that inductive cues play a major role in the patterning of adult thoracic muscles. We provide a model that illustrates the central role of inductive cues in generating the final adult muscle pattern in the thorax.  相似文献   

5.
Five peroxiredoxin genes have been identified in Drosophila melanogaster on the basis of a genome-wide search. Three of the genes (DPx-4156, DPx-4783, and DPx-5037) fall into the 2-Cys subgroup, while the other two (DPx-2540 and DPx-6005) belong to the 1-Cys subgroup. Using cDNAs, all five were expressed in E. coli and the purified recombinant proteins were shown to reduce H(2)O(2) in the presence of dithiothreitol. The three 2-Cys Prx were also shown to be active in the thioredoxin system and were, consequently, classified as thioredoxin peroxidases. Antisera raised against the DPx-4783 recombinant protein crossreacted with all family members and recognized protein species of the predicted sizes (22-27 kD). All five family members, when individually overexpressed in Drosophila S2 cells, conferred some resistance to H(2)O(2) treatment, as measured by cell viability. Functional diversification of the Drosophila peroxiredoxin family members was suggested by two lines of evidence: (i) the patterns of mRNA accumulation varied for the different genes during development and (ii) recombinant proteins fused to an epitope tag and overexpressed in Drosophila cells, differed in subcellular localizations--three proteins occurred in the cytosol, one was localized to the mitochondria, and one was found to be secreted.  相似文献   

6.
J Müller  M Bienz 《The EMBO journal》1991,10(11):3147-3155
In an attempt to reconstruct the embryonic expression pattern of the homeotic gene Ultrabithorax (Ubx) by stable integration of fusion constructs, we identified three key control regions called PBX, ABX and BXD. Each of these confers an expression pattern mimicking certain aspects of Ubx expression. The PBX and ABX patterns are limited to the Ubx domain with anterior boundaries at parasegments 6 and 5. In contrast, the BXD pattern extends from head to tail. PBX or ABX expression boundaries are imposed on the BXD pattern, if PBX or ABX is linked to BXD. These boundaries, although not the PBX and ABX expression limits themselves, are dependent on Polycomb function. We conclude that PBX and ABX are recognized by repressors which act across large distances to suppress BXD activity. Stable and heritable Ubx expression boundaries are thus mediated by this process of long range repression.  相似文献   

7.
G proteins couple receptors for extracellular signals to several intracellular effector systems and play a key role in signalling transduction mechanisms. In particulate preparations of Drosophila melanogaster heads, only one substrate for pertussis toxin at 39-40 kd was detected. This substrate, which showed only one isoform when analysed by isoelectric focusing, was recognized by immunoblotting and immunoprecipitation techniques using a polyclonal antibody against the alpha subunit of the Go protein purified from bovine brain and can be thus considered as a Go-like protein. Antibodies obtained against a carboxy-terminal sequence of the alpha subunit of Go (but not of Gi1 or Gi2) and against an internal sequence shared by all the alpha subunits, were also able to cross-react with the alpha subunit of this protein in insects. We have also studied the Go-like protein in several D.melanogaster mutants, primarily in memory and learning mutants. In these mutants there was a sex-dependent enhancement in pertussis toxin-catalysed ADP-ribosylation with respect to the wild-type. This increase could be attributed in part to an increase in the alpha subunit of the Go-like protein, as revealed by immunoblotting with anti-Go alpha polyclonal antibody. This report constitutes the first evidence for the participation of a Go protein in learning and memory.  相似文献   

8.
9.
姚云  林欣大  王博 《昆虫学报》2015,58(7):699-705
【目的】已有研究表明,食用了饲喂以沙丁胺醇为主要成分的瘦肉精的动物肉类后,瘦肉精成分会在人体内富集,摄入过量沙丁胺醇会对生物体造成不良影响,但是,其具体毒性作用机理目前尚不明确。作为一种模式生物,黑腹果蝇Drosophila melanogaster与哺乳动物的基因具有较高的同源性,且具有繁殖周期短、方便进行遗传操作等优势。因此,我们通过研究过量沙丁胺醇对黑腹果蝇基因组稳定性、细胞凋亡和蛋白表达的影响,来探究它对生物体毒性作用的机理。【方法】将野生型黑腹果蝇3龄幼虫用含沙丁胺醇(120 μg/mL)的饲料饲喂2 h后,对幼虫翅成虫盘进行H2Av抗体免疫染色。选取rpr-lacZ转基因黑腹果蝇1龄幼虫用含沙丁胺醇(40 和120 μg/mL)的饲料饲喂,对幼虫翅成虫盘进行lacZ活性测定。提取沙丁胺醇处理后的野生型3龄幼虫总蛋白,采用SDS-PAGE比较对照组和实验组蛋白表达的差异,并通过质谱分析差异蛋白的氨基酸序列。【结果】沙丁胺醇处理后,经免疫荧光染色发现野生型黑腹果蝇幼虫翅成虫盘部分细胞中组蛋白H2Av的量有显著增加。随着沙丁胺醇浓度的增加,转rpr-lacZ报告基因黑腹果蝇成虫盘细胞lacZ活性增强。采用SDS-PAGE和质谱分析表明,沙丁胺醇处理后黑腹果蝇肌动蛋白(Actin-87E)和异柠檬酸脱氢酶表达量上升。【结论】沙丁胺醇处理会引起黑腹果蝇细胞核DNA损伤,对基因稳定性有显著影响,并且会促进细胞凋亡和蛋白表达的改变。沙丁胺醇可能通过促进肌肉收缩和加速生物体能量代谢这两方面来减少脂肪积蓄。  相似文献   

10.
11.
The activity of the Ultrabithorax gene is continuously required during imaginal development to maintain the morphogenetic identity of the third thoracic segment of Drosophila. The spatial pattern of Ultrabithorax gene expression depends on certain cis regulatory regions and several trans regulatory genes. Amongst the latter the Polycomb gene is necessary to maintain Ultrabithorax repressed in cells where it was not initially activated and the trithorax gene is required for maintaining the expression of the gene where initially active. We have studied genetic interactions between several Ultrabithorax mutations in coding and cis regulatory regions in combination with Polycomb and trithorax mutations. Our results suggest that Polycomb and trithorax gene products do not interact with Ultrabithorax protein products but interact (directly or indirectly) with specific and discrete cis regulatory regions such as those where anterobithorax and postbithorax but not bithorax mutations map. We discuss possible mechanisms of these interactions.  相似文献   

12.
Burnette JM  Hatton AR  Lopez AJ 《Genetics》1999,151(4):1517-1529
Alternatively spliced Ultrabithorax mRNAs differ by the presence of internal exons mI and mII. Two approaches were used to identify trans-acting factors required for inclusion of these cassette exons. First, mutations in a set of genes implicated in the control of other alternative splicing decisions were tested for dominant effects on the Ubx alternative splicing pattern. To identify additional genes involved in regulation of Ubx splicing, a large collection of deficiencies was tested first for dominant enhancement of the haploinsufficient Ubx haltere phenotype and second for effects on the splicing pattern. Inclusion of the cassette exons in Ubx mRNAs was reduced strongly in heterozygotes for hypomorphic alleles of hrp48, which encodes a member of the hnRNP A/B family and is implicated in control of P-element splicing. Significant reductions of mI and mII inclusion were also observed in heterozygotes for loss-of-function alleles of virilizer, fl(2)d, and crooked neck. The products of virilizer and fl(2)d are also required for Sxl autoregulation at the level of splicing; crooked neck encodes a protein with structural similarities to yeast-splicing factors Prp39p and Prp42p. Deletion of at least five other loci caused significant reductions in the inclusion of mI and/or mII. Possible roles of identified factors are discussed in the context of the resplicing strategy for generation of alternative Ubx mRNAs.  相似文献   

13.
Genes that encode 3rd instar larval cuticle proteins (LCP's) of Drosophila melanogaster are located in at least two chromosomal sites. The genes encoding four of the five predominant LCP's are located in a cluster at the chromosomal region 44D. They are organized in pairs that are transcribed divergently, and expressed with different timing during the third larval instar. Towards understanding the basis of gene regulation within the 44D cluster, we have analyzed genetic variants, including the 2-3 variant, which has an insertion of a copia-like transposable element, H.M.S. Beagle, within the 44D cluster. The Beagle element appears to inactivate the LCP-3 gene by inserting into its TATA box, but also may cause the precocious expression of two other LCP genes, LCP-1 and LCP-f2, in the cluster. The long terminal repeat (LTR) of the Beagle element apparently contains a sequence, perhaps an enhancer-like element, which causes altered expression of these genes. We have also investigated the cis-regulatory elements involved in expression of the LCP-2 gene in wild-type larvae. We have identified two upstream regions that may contain separate cis-regulatory elements. The region between -252 bp and -515 bp may be essential for any expression of LCP-2. Additionally, the region between -515 bp and -795 bp appears to be required for the normal level of expression of the LCP-2 gene.  相似文献   

14.
Functional dissection of Ultrabithorax proteins in D. melanogaster   总被引:37,自引:0,他引:37  
R S Mann  D S Hogness 《Cell》1990,60(4):597-610
Expression of Ultrabithorax (UBX) proteins via a heat-inducible promoter generated homeotic transformations of segmental identities in the embryonic cuticle and peripheral nervous system (PNS) of Drosophila and transformed antennae into legs in the adult. The embryonic transformations were used to determine the identity functions of members of the UBX family and UBX mutant forms. Whereas UBX forms I and IV each induced the cuticle transformations, only form I induced the PNS transformations. Analysis of the transformations generated by UBX deletions and by a chimeric Ultrabithorax-Antennapedia protein demonstrated that the majority of the UBX identity information is contained within the C-terminal, homeodomain-containing portion of the protein. Implications of these results for how homeotic proteins select particular metameric identities are discussed.  相似文献   

15.
Neuropeptides affect an extremely diverse set of physiological processes. Neuropeptides are often coreleased with neurotransmitters but, unlike neurotransmitters, the neuropeptide target cells may be distant from the site(s) of secretion. Thus, it is often difficult to measure the amount of neuropeptide release in vivo by electrophysiological methods. Here we establish an in vivo system for studying the developmental expression, processing, transport, and release of neuropeptides. A GFP-tagged atrial natriuretic factor fusion (preproANF-EMD) was expressed in the Drosophila nervous system with the panneural promoter, elav. During embryonic development, proANF-EMD was first seen to accumulate in synaptic regions of the CNS in stage 17 embryos. By the third instar larval stage, highly fluorescent neurons were evident throughout the CNS. In the adult, fluorescence was pronounced in the mushroom bodies, antennal lobe, and the central complex. At the larval neuromuscular junction, proANF-EMD was concentrated in nerve terminals. We compared the release of proANF-EMD from synaptic boutons of NMJ 6/7, which contain almost exclusively glutamate-containing clear vesicles, to those of NMJ 12, which include the peptidergic type III boutons. Upon depolarization, approximately 60% of the tagged neuropeptide was released from NMJs of both muscles in 15 min, as assayed by decreased fluorescence. Although the elav promoter was equally active in the motor neurons that innervate both NMJs 6/7 and 12, NMJ 12 contained 46-fold more neuropeptide and released much more proANF-EMD during stimulation than did NMJ 6/7. Our results suggest that peptidergic neurons have an enhanced ability to accumulate and/or release neuropeptides as compared to neurons that primarily release classical neurotransmitters.  相似文献   

16.
17.
Using a monoclonal antibody and image-processing procedures, the patterns of expression of the Ultrabithorax (Ubx) gene product have been characterized in Drosophila larvae. As reported previously, the metathoracic imaginal discs stain most intensely with anti-Ubx, with some mesothoracic and no prothoracic expression detectable. In the metathoracic discs, the greatest modulation in anti-Ubx staining is along the proximodistal axis. Ubx is generally expressed at higher levels in the posterior regions of metathoracic discs, although relatively high anterior expression is found in some areas. Expression in the mature wing disc is confined to the squamous peripodial membrane cells; in younger wings, Ubx expression fills the posterior half of the peripodial side of the disc. The mesothoracic leg stains with a pattern that is qualitatively similar (but not identical) to that of the metathoracic leg; Ubx is expressed in some anterior regions of the mesothoracic leg, in parasegment 4. Double staining with anti-Ubx and anti-engrailed reveals that discontinuities in Ubx expression that have been suggested to correspond to compartment borders do not coincide with the compartment boundaries in some cases. In the larval ventral ganglion, Ubx expression is greatest in parasegments 5 and 6, as in the embryonic nervous system.  相似文献   

18.
beta 3 tubulin expression accompanies the specification and differentiation of the Drosophila mesoderm. The genetic programs involved in these processes are largely unknown. Our previous studies on the regulation of the beta 3 tubulin gene have shown that upstream sequences guide the expression in the somatic musculature, while regulatory elements in the first intron are necessary for expression in the visceral musculature. To further analyse this mode of regulation, which reflects an early embryonic specification program, we undertook a more detailed analysis of the regulatory capabilities of the intron. The results reveal not only a certain degree of redundancy in the cis-acting elements, which act at different developmental stages in the same mesodermal derivatives, but they also demonstrate in the visceral mesoderm, which forms a continuous epithelium along the body axis of the embryo, an early action of regulators guiding gene expression along the anterior-posterior axis of the embryo: an enhancer element in the intron leads to expression in a subdomain restricted along the anterior-posterior axis. This pattern is altered in mutants in the homeotic gene Ultrabithorax (Ubx), whereas ectopic Ubx expression leads to activity of the enhancer in the entire visceral mesoderm. So this element is likely to be a target of homeotic genes, which would define the beta 3 tubulin gene as a realisator gene under the control of selector genes.  相似文献   

19.
Summary A 190 by insertion is associated with the white-eosin mutation in Drosophila melanogaster. This insertion is a member of a family of transposable elements, pogo elements, which is of the same class as the P and hobo elements of D. melanogaster. Strains typically have many copies of a 190 by element, 10–15 elements 1.1–1.5 kb in size and several copies of a 2.1 kb element. The smaller elements all appear to be derived from the largest by single internal deletions so that all elements share terminal sequences. They either always insert at the dinucleotide TA and have perfect 21 bp terminal inverse repeats, or have 22 by inverse repeats and produce no duplication upon insertion. Analysis by DNA blotting of their distribution and occupancy of insertion sites in different strains suggests that they may be less mobile than P or hobo. The DNA sequence of the largest element has two long open reading frames on one strand which are joined by splicing as indicated by cDNA analysis. RNAs of this strand are made, whose sizes are similar to the major size classes of elements. A protein predicted by the DNA sequence has significant homology with a human centrosomal-associated protein, CENP-B. Homologous sequences were not detected in other Drosophila species, suggesting that this transposable element family may be restricted to D. melanogaster.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号