首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
SecB maintains the structures of a subset of precursor proteins competent for translocation across the Escherichia coli cytoplasmic membrane. SecG, a membrane component of the translocation machinery, stimulates protein translocation by undergoing the cycle of membrane topology inversion. Null mutants of secB and secG are unable to form isolated colonies on rich medium and at low temperature respectively. A 3.2 kb DNA fragment carrying the secB–gpsA region on a multicopy plasmid was found to suppress the null mutation of either gene. However, subcloning of the DNA fragment revealed that secB is not involved in the suppression of either mutation. Instead, gpsA located downstream from the secB gene was found to be responsible for the suppression of both mutations. The activity of the gpsA -encoded sn -glycerol-3-phosphate dehydrogenase, which is involved in phospholipid synthesis, was significantly lower in the secB null mutant than in the wild type, presumably because of a polar effect. Suppression of the secB null mutation required the wild-type level of GpsA activity. In contrast, overexpression of the enzyme was essential for suppression of the secG null mutation. Moreover, the gpsA -dependent suppression of the secG null mutation occurred only on rich medium, i.e. not on minimal medium. These results indicate that the SecB function is dispensable even in rich medium, and further demonstrate that overexpression of enzymes involved in phospholipid synthesis partly compensates for the SecG function.  相似文献   

2.
T Watanabe  S Hayashi    H C Wu 《Journal of bacteriology》1988,170(9):4001-4007
Export of the outer membrane lipoprotein in Escherichia coli was examined in conditionally lethal mutants that were defective in protein export in general, including secA, secB, secC, and secD. Lipoprotein export was affected in a secA(Ts) mutant of E. coli at the nonpermissive temperature; it was also affected in a secA(Am) mutant of E. coli at the permissive temperature, but not at the nonpermissive temperature. The export of lipoprotein occurred normally in E. coli carrying a null secB::Tn5 mutation; on the other hand, the export of an OmpF::Lpp hybrid protein, consisting of the signal sequence plus 11 amino acid residues of mature OmpF and mature lipoprotein, was affected by the secB mutation. The synthesis of lipoprotein was reduced in the secC mutant at the nonpermissive temperature, as was the case for synthesis of the maltose-binding protein, while the synthesis of OmpA was not affected. Lipoprotein export was found to be slightly affected in secD(Cs) mutants at the nonpermissive temperature. These results taken together indicate that the export of lipoprotein shares the common requirements for functional SecA and SecD proteins with other exported proteins, but does not require a functional SecB protein. SecC protein (ribosomal protein S15) is required for the optimal synthesis of lipoprotein.  相似文献   

3.
4.
The efficient export of proteins through the cytoplasmic membrane of Escherichia coli requires chaperones to maintain protein precursors in a translocation-competent conformation. In addition to SecB, the major chaperone facilitating export of particular precursors, heat shock-induced chaperones DnaK-DnaJ and GroEL-GroES are also involved in this process. By use of secB'-lacZ gene fusions and immunoprecipitation experiments, SecB production was studied in E. coli strains containing conditional lethal mutations in chaperone or sec genes. While the loss of heat shock chaperones resulted in an increased production of SecB, mutations in sec genes showed only minor effects on SecB synthesis. Neither the plasmid-mediated overexpression of precursors of exoproteins nor the overexpression of secB altered the synthesis of SecB. These results suggest that under conditions where chaperones become depleted, E. coli responds by raising the expression of secB. These data confirm the supposed synergy of different chaperones involved in protein export.  相似文献   

5.
SecB is a cytosolic protein required for rapid and efficient export of particular periplasmic and outer membrane proteins in Escherichia coli. SecB promotes export by stabilizing newly synthesized precursor proteins in a nonnative conformation and by targeting the precursors to the inner membrane. Biochemical studies suggest that SecB facilitates precursor targeting by binding to the SecA protein, a component of the membrane-embedded translocation apparatus. To gain more insight into the functional interaction of SecB and SecA, in vivo, mutations in the secA locus that compensate for the export defect caused by the secB missense mutation secBL75Q were isolated. Two suppressors were isolated, both of which led to the overproduction of wild-type SecA protein. In vivo studies demonstrated that the SecBL75Q mutant protein releases precursor proteins at a lower rate than does wild-type SecB. Increasing the level of SecA protein in the cell was found to reverse this slow-release defect, indicating that overproduction of SecA stimulates the turnover of SecBL75Q-precursor complexes. These findings lend additional support to the proposed pathway for precursor targeting in which SecB promotes targeting to the translocation apparatus by binding to the SecA protein.  相似文献   

6.
HasA is the secreted hemophore of the heme acquisition system (Has) of Serratia marcescens. It is secreted by a specific ABC transporter apparatus composed of three proteins: HasD, an inner membrane ABC protein; HasE, another inner membrane protein; and HasF, a TolC homolog. Except for HasF, the structural genes of the Has system are encoded by an iron-regulated operon. In previous studies, this secretion system has been reconstituted in Escherichia coli, where it requires the presence of the SecB chaperone, the Sec pathway-dedicated chaperone. We cloned and inactivated the secB gene from S. marcescens. We show that S. marcescens SecB is 93% identical to E. coli SecB and complements the secretion defects of a secB mutant of E. coli for both the Sec and ABC pathways of HasA secretion. In S. marcescens, SecB inactivation affects translocation by the Sec pathway and abolishes HasA secretion. This demonstrates that S. marcescens SecB is the genuine chaperone for HasA secretion in S. marcescens. These results also demonstrate that S. marcescens SecB is bifunctional, as it is involved in two separate secretion pathways. We investigated the effects of secB point mutations in the reconstituted HasA secretion pathway by comparing the translocation of a Sec substrate in various mutants. Two different patterns of SecB residue effects were observed, suggesting that SecB functions may differ for the Sec and ABC pathways.  相似文献   

7.
The effect of SecB chaperone on production of periplasmic penicillin acylase (PAC) in Escherichia coli was investigated. It appears that formation of PAC required the function of SecB chaperone and the amount of SecB required was at a basal level. The secB mutant was defective in production of PAC, and the impairment could be complemented by extrachromosomally supplementing SecB in trans. The function of SecB might be primarily stabilizing the cytoplasmic PAC precursors. Overproduction of SecB chaperone usually resulted in an increase in the amount of PAC precursors without enhancing PAC activity. In addition, most of the PAC precursors were located in the periplasm, suggesting that formation of active PAC was likely limited by periplasmic processing steps.  相似文献   

8.
Protein translocation through the cytoplasmic membrane of Escherichia coli involves cytosolic chaperones. The export-dedicated chaperone SecB mediates targeting of a subset of pre-proteins. In this report, synthesis of SecB in response to plasmid-mediated overexpression of pre-proteins was studied. Overexpression of SecB-dependent pre-proteins stimulated synthesis of SecB under conditions where the cellular export capacity was saturated or uncomplexed SecB was trapped. On the contrary, overexpression of SecB-independent pre-beta-lactamase reduced the promoter activity of secB. The results suggest that uncomplexed SecB can be sequestered by synthesis of SecB-dependent pre-proteins. Furthermore, these data demonstrate the distinct action of the SecB- and signal recognition particle-dependent protein targeting pathways.  相似文献   

9.
Various environmental insults result in irreversible damage to proteins and protein complexes. To cope, cells have evolved dedicated protein quality control mechanisms involving molecular chaperones and proteases. Here, we provide both genetic and biochemical evidence that the Lon protease and the SecB and DnaJ/Hsp40 chaperones are involved in the quality control of presecretory proteins in Escherichia coli. We showed that mutations in the lon gene alleviate the cold-sensitive phenotype of a secB mutant. Such suppression was not observed with either clpP or clpQ protease mutants. In comparison to the respective single mutants, the double secB lon mutant strongly accumulates aggregates of SecB substrates at physiological temperatures, suggesting that the chaperone and the protease share substrates. These observations were extended in vitro by showing that the main substrates identified in secB lon aggregates, namely proOmpF and proOmpC, are highly sensitive to specific degradation by Lon. In contrast, both substrates are significantly protected from Lon degradation by SecB. Interestingly, the chaperone DnaJ by itself protects substrates better from Lon degradation than SecB or the complete DnaK/DnaJ/GrpE chaperone machinery. In agreement with this finding, a DnaJ mutant protein that does not functionally interact in vivo with DnaK efficiently suppresses the SecB cold-sensitive phenotype, highlighting the role of DnaJ in assisting presecretory proteins. Taken together, our data suggest that when the Sec secretion pathway is compromised, a pool of presecretory proteins is transiently maintained in a translocation-competent state and, thus, protected from Lon degradation by either the SecB or DnaJ chaperones.  相似文献   

10.
The product of the secB gene is required for export of a subset of secreted proteins to the outer membrane and periplasm of Escherichia coli. Precursor maltose-binding protein (MBP) accumulates in the cytoplasm of secB-carrying mutants, but export of alkaline phosphatase is only minimally affected by secB mutations. When export of MBP-alkaline phosphatase hybrid proteins was analyzed in wild-type and secB-carrying mutant strains, the first third of mature MBP was sufficient to render export of the hybrid proteins dependent on SecB. Substitution of a signal sequence from a SecB-independent protein had no effect on SecB-dependent export. These findings show that the first third of mature MBP is capable of conferring export incompetence on an otherwise competent protein.  相似文献   

11.
The rate of folding of the precursor of beta-lactamase is not influenced by the presence of SecB under conditions in which GroEL/ES retards the folding. Wild-type beta-lactamase and several mutants in the signal or the mature protein, affecting either transport or enzyme kinetics and probably folding, were examined for total expression, total enzymatic activity, and transported beta-lactamase (in vivo resistance) in secB- and secB+ strains. We conclude that there is no indication of any relevant interaction between SecB and pre-beta-lactamase in vitro, nor did the secB- mutation affect the transport of wild-type beta-lactamase or any of the mutant in vivo. Thus, putative Escherichia coli "folding modulators' must be of limited specificity.  相似文献   

12.
J Kim  Y Lee  C Kim    C Park 《Journal of bacteriology》1992,174(16):5219-5227
Ribose-binding protein (RBP) is an exported protein of Escherichia coli that functions in the periplasm. The export of RBP involves the secretion machinery of the cell, consisting of a cytoplasmic protein, SecA, and the integral membrane translocation complex, including SecE and SecY. SecB protein, a chaperone known to mediate the export of some periplasmic and outer membrane proteins, was previously reported not to be involved in RBP translocation even though small amounts of in vitro complexes between SecB and RBP have been detected. In our investigation, it was shown that a dependence on SecB could be demonstrated under conditions in which export was compromised. Species of RBP which carry two mutations, one in the leader that blocks export and a second in the mature protein which partially suppresses the export defect, were shown to be affected by SecB for efficient translocation. Five different changes which suppress the effect of the signal sequence mutation -17LP are all located in the N domain of the tertiary structure of RBP. All species of RBP show similar interaction with SecB. Furthermore, a leaky mutation, -14AE, generated by site-specific mutagenesis causes reduced export in the absence of SecB. These results indicate that SecB can interact with RBP during secretion, although it is not absolutely required under normal circumstances.  相似文献   

13.
14.
Mutations in the Escherichia coli secB gene lead to protein export defects in vivo (Kumamoto, C.A., and Beckwith, J. (1985) J. Bacteriol. 163, 267-274). To demonstrate directly the participation of the secB gene product (SecB) in protein export, SecB was purified, and its effects on in vitro protein translocation were analyzed. SecB was purified from soluble extracts of a strain that overproduced it, by ammonium sulfate precipitation, DEAE-cellulose chromatography, and differential precipitation at acid pH. The chromatographic behavior on gel filtration columns indicated apparent molecular masses of approximately 90 kDa for both purified SecB and SecB in cytosolic extracts of wild type cells. When added to a translocation mixture, purified SecB stimulated pro-OmpA translocation into membrane vesicles. SecB also suppressed the thermoinduced defect in translocating activity of membranes derived from a secY24 mutant. The results of these in vitro studies and of previous in vivo studies demonstrate that SecB plays a direct role in normal protein export in E. coli.  相似文献   

15.

Background  

The Sec-dependent protein export apparatus of Escherichia coli is very efficient at correctly identifying proteins to be exported from the cytoplasm. Even bacterial strains that carry prl mutations, which allow export of signal sequence-defective precursors, accurately differentiate between cytoplasmic and mutant secretory proteins. It was proposed previously that the basis for this precise discrimination is the slow folding rate of secretory proteins, resulting in binding by the secretory chaperone, SecB, and subsequent targeting to translocase. Based on this proposal, we hypothesized that a cytoplasmic protein containing a mutation that slows its rate of folding would be recognized by SecB and therefore targeted to the Sec pathway. In a Prl suppressor strain the mutant protein would be exported to the periplasm due to loss of ability to reject non-secretory proteins from the pathway.  相似文献   

16.
We exploited the conditional-lethal phenotype of secB null mutations to demonstrate that SecB function was required for PrlA-mediated suppression of signal sequence mutations. The results of these experiments provide information about the functions performed and the sequence determinants recognized by each of these components of the protein export machinery of Escherichia coli.  相似文献   

17.
Characterization of the Escherichia coli protein-export gene secB   总被引:13,自引:0,他引:13  
C A Kumamoto  A K Nault 《Gene》1989,75(1):167-175
The Escherichia coli secB gene product is required for normal export of envelope proteins out of the cell cytoplasm. In this report, we present the identification and nucleotide sequence of the secB coding sequence. The secB structural gene overlaps almost completely with a predicted open reading frame (ORF) that is encoded on the opposite strand. To establish the identity of the secB ORF, we characterized a secB mutation that caused total loss of secB function, based upon its phenotype. This mutation resulted from a nucleotide change that caused an ochre mutation in one ORF (the secB gene) and a silent (no amino acid change) codon change in the opposite ORF.  相似文献   

18.
The molecular requirements for the translocation of secretory proteins across, and the integration of membrane proteins into, the plasma membrane of Escherichia coli were compared. This was achieved in a novel cell-free system from E. coli which, by extensive subfractionation, was simultaneously rendered deficient in SecA/SecB and the signal recognition particle (SRP) components, Ffh (P48), 4. 5S RNA, and FtsY. The integration of two membrane proteins into inside-out plasma membrane vesicles of E. coli required all three SRP components and could not be driven by SecA, SecB, and DeltamicroH+. In contrast, these were the only components required for the translocation of secretory proteins into membrane vesicles, a process in which the SRP components were completely inactive. Our results, while confirming previous in vivo studies, provide the first in vitro evidence for the dependence of the integration of polytopic inner membrane proteins on SRP in E. coli. Furthermore, they suggest that SRP and SecA/SecB have different substrate specificities resulting in two separate targeting mechanisms for membrane and secretory proteins in E. coli. Both targeting pathways intersect at the translocation pore because they are equally affected by a blocked translocation channel.  相似文献   

19.
Methods for reproducibly preparing highly translocation-competent proOmpA were developed. Only a competent form of proOmpA was sorted out from incompetent one using SecB, a translocation-dedicated chaperone, as a probe. Trypsin digestion revealed that the incompetent form of proOmpA was partially folded at its N-terminus, consistent with the jamming of proOmpA within translocon. Although the incompetent form of proOmpA was not active as to topology inversion of SecG, the isolated proOmpA/SecB complex had recovered the ability of SecG inversion. These results let us prepare a proOmpA/SecB complex both in vivo and in vitro that is highly translocation-competent. E. coli cells harboring a plasmid, in which ompA and secB were encoded as a synthetic operon, accumulated the proOmpA/SecB complex in the cytosol. The complex, purified by means of a His tag attached to SecB, was found to be translocation-competent as revealed by the occurrence of SecG inversion, although the signal peptide of proOmpA was sensitive to proteolytic digestion. ProOmpA, in vitro synthesized by means of a continuous exchange cell free system in the presence of SecB-His, was purified as a complex with SecB, which was active as to SecG inversion as well.  相似文献   

20.
SecB is a molecular chaperone unique to the phylum Proteobacteria, which includes the majority of known Gram-negative bacteria of medical, industrial and agricultural significance. SecB is involved in the translocation of secretory proteins across the cytoplasmic membrane. The crystal structure of the Haemophilus influenzae SecB provides new insights into how SecB simultaneously recognizes its two ligands: unfolded preproteins and SecA, the ATPase subunit of the translocase. SecB uses its entire molecular surface for these two functions, but for preprotein release and its own membrane release, SecB relies on the catalytic activity of SecA. This defines SecB as a translocation-specific molecular chaperone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号