首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dong E  Smith J  Heinze S  Alexander N  Meiler J 《Gene》2008,422(1-2):41-46
BCL::Align is a multiple sequence alignment tool that utilizes the dynamic programming method in combination with a customizable scoring function for sequence alignment and fold recognition. The scoring function is a weighted sum of the traditional PAM and BLOSUM scoring matrices, position-specific scoring matrices output by PSI-BLAST, secondary structure predicted by a variety of methods, chemical properties, and gap penalties. By adjusting the weights, the method can be tailored for fold recognition or sequence alignment tasks at different levels of sequence identity. A Monte Carlo algorithm was used to determine optimized weight sets for sequence alignment and fold recognition that most accurately reproduced the SABmark reference alignment test set. In an evaluation of sequence alignment performance, BCL::Align ranked best in alignment accuracy (Cline score of 22.90 for sequences in the Twilight Zone) when compared with Align-m, ClustalW, T-Coffee, and MUSCLE. ROC curve analysis indicates BCL::Align's ability to correctly recognize protein folds with over 80% accuracy. The flexibility of the program allows it to be optimized for specific classes of proteins (e.g. membrane proteins) or fold families (e.g. TIM-barrel proteins). BCL::Align is free for academic use and available online at http://www.meilerlab.org/.  相似文献   

2.
Protein threading using PROSPECT: design and evaluation   总被引:14,自引:0,他引:14  
Xu Y  Xu D 《Proteins》2000,40(3):343-354
The computer system PROSPECT for the protein fold recognition using the threading method is described and evaluated in this article. For a given target protein sequence and a template structure, PROSPECT guarantees to find a globally optimal threading alignment between the two. The scoring function for a threading alignment employed in PROSPECT consists of four additive terms: i) a mutation term, ii) a singleton fitness term, iii) a pairwise-contact potential term, and iv) alignment gap penalties. The current version of PROSPECT considers pair contacts only between core (alpha-helix or beta-strand) residues and alignment gaps only in loop regions. PROSPECT finds a globally optimal threading efficiently when pairwise contacts are considered only between residues that are spatially close (7 A or less between the C(beta) atoms in the current implementation). On a test set consisting of 137 pairs of target-template proteins, each pair being from the same superfamily and having sequence identity 相似文献   

3.
Alignment of protein sequences is a key step in most computational methods for prediction of protein function and homology-based modeling of three-dimensional (3D)-structure. We investigated correspondence between "gold standard" alignments of 3D protein structures and the sequence alignments produced by the Smith-Waterman algorithm, currently the most sensitive method for pair-wise alignment of sequences. The results of this analysis enabled development of a novel method to align a pair of protein sequences. The comparison of the Smith-Waterman and structure alignments focused on their inner structure and especially on the continuous ungapped alignment segments, "islands" between gaps. Approximately one third of the islands in the gold standard alignments have negative or low positive score, and their recognition is below the sensitivity limit of the Smith-Waterman algorithm. From the alignment accuracy perspective, the time spent by the algorithm while working in these unalignable regions is unnecessary. We considered features of the standard similarity scoring function responsible for this phenomenon and suggested an alternative hierarchical algorithm, which explicitly addresses high scoring regions. This algorithm is considerably faster than the Smith-Waterman algorithm, whereas resulting alignments are in average of the same quality with respect to the gold standard. This finding shows that the decrease of alignment accuracy is not necessarily a price for the computational efficiency.  相似文献   

4.
Two new sets of scoring matrices are introduced: H2 for the protein sequence comparison and T2 for the protein sequence-structure correlation. Each element of H2 or T2 measures the frequency with which a pair of amino acid types in one protein, k-residues apart in the sequence, is aligned with another pair of residues, of given amino acid types (for H2) or in given structural states (for T2), in other structurally homologous proteins. There are four types, corresponding to the k-values of 1 to 4, for both H2 and T2. These matrices were set up using a large number of structurally homologous protein pairs, with little sequence homology between the pair, that were recently generated using the structure comparison program SHEBA. The two scoring matrices were incorporated into the main body of the sequence alignment program SSEARCH in the FASTA package and tested in a fold recognition setting in which a set of 107 test sequences were aligned to each of a panel of 3,539 domains that represent all known protein structures. Six procedures were tested; the straight Smith-Waterman (SW) and FASTA procedures, which used the Blosum62 single residue type substitution matrix; BLAST and PSI-BLAST procedures, which also used the Blosum62 matrix; PASH, which used Blosum62 and H2 matrices; and PASSC, which used Blosum62, H2, and T2 matrices. All procedures gave similar results when the probe and target sequences had greater than 30% sequence identity. However, when the sequence identity was below 30%, a similar structure could be found for more sequences using PASSC than using any other procedure. PASH and PSI-BLAST gave the next best results.  相似文献   

5.
构建基于折叠核心的全α类蛋白取代矩阵   总被引:1,自引:0,他引:1  
氨基酸残基取代矩阵是影响多序列比对效果的重要因素,现有的取代矩阵对低相似序列的比对性能较低.在已有的 BLOSUM 取代矩阵算法基础上,定义了基于蛋白质折叠核心结构的序列 结构数据块;提出一种新的基于全α类蛋白质折叠核心结构的氨基酸残基取代矩阵——TOPSSUM25,用于提高低相似度序列的比对效果.将矩阵TOPSSUM25导入多序列比对程序,对相似性小于25%的一组四螺旋束序列 结构数据块的测试结果表明,基于 TOPSSUM25的多序列比对效果明显优于BLOSUM30矩阵;基于一个BAliBASE子集的比对检验也进一步表明, TOPSSUM25在全α类蛋白质的两两序列比对上优于BLOSUM30矩阵.研究结果可为进一步的阐明低同源蛋白质序列 结构 功能关系提供帮助.  相似文献   

6.
McGuffin LJ  Jones DT 《Proteins》2002,48(1):44-52
The ultimate goal of structural genomics is to obtain the structure of each protein coded by each gene within a genome to determine gene function. Because of cost and time limitations, it remains impractical to solve the structure for every gene product experimentally. Up to a point, reasonably accurate three‐dimensional structures can be deduced for proteins with homologous sequences by using comparative modeling. Beyond this, fold recognition or threading methods can be used for proteins showing little homology to any known fold, although this is relatively time‐consuming and limited by the library of template folds currently available. Therefore, it is appropriate to develop methods that can increase our knowledge base, expanding our fold libraries by earmarking potentially “novel” folds for experimental structure determination. How can we sift through proteomic data rapidly and yet reliably identify novel folds as targets for structural genomics? We have analyzed a number of simple methods that discriminate between “novel” and “known” folds. We propose that simple alignments of secondary structure elements using predicted secondary structure could potentially be a more selective method than both a simple fold recognition method (GenTHREADER) and standard sequence alignment at finding novel folds when sequences show no detectable homology to proteins with known structures. Proteins 2002;48:44–52. © 2002 Wiley‐Liss, Inc.  相似文献   

7.
Melo F  Marti-Renom MA 《Proteins》2006,63(4):986-995
Reduced or simplified amino acid alphabets group the 20 naturally occurring amino acids into a smaller number of representative protein residues. To date, several reduced amino acid alphabets have been proposed, which have been derived and optimized by a variety of methods. The resulting reduced amino acid alphabets have been applied to pattern recognition, generation of consensus sequences from multiple alignments, protein folding, and protein structure prediction. In this work, amino acid substitution matrices and statistical potentials were derived based on several reduced amino acid alphabets and their performance assessed in a large benchmark for the tasks of sequence alignment and fold assessment of protein structure models, using as a reference frame the standard alphabet of 20 amino acids. The results showed that a large reduction in the total number of residue types does not necessarily translate into a significant loss of discriminative power for sequence alignment and fold assessment. Therefore, some definitions of a few residue types are able to encode most of the relevant sequence/structure information that is present in the 20 standard amino acids. Based on these results, we suggest that the use of reduced amino acid alphabets may allow to increasing the accuracy of current substitution matrices and statistical potentials for the prediction of protein structure of remote homologs.  相似文献   

8.
Improved sequence alignment at low pairwise identity is important for identifying potential remote homologues in database searches and for obtaining accurate alignments as a prelude to modeling structures by homology. Our work is motivated by two observations: structural data provide superior training examples for developing techniques to improve the alignment of remote homologues; and general substitution patterns for remote homologues differ from those of closely related proteins. We introduce a new set of amino acid residue interchange matrices built from structural superposition data. These matrices exploit known structural homology as a means of characterizing the effect evolution has on residue-substitution profiles. Given their origin, it is not surprising that the individual residue-residue interchange frequencies are chemically sensible.The structural interchange matrices show a significant increase both in pairwise alignment accuracy and in functional annotation/fold recognition accuracy across distantly related sequences. We demonstrate improved pairwise alignment by using superpositions of homologous domains extracted from a structural database as a gold standard and go on to show an increase in fold recognition accuracy using a database of homologous fold families. This was applied to the unassigned open reading frames from the genome of Helicobacter pylori to identify five matches, two of which are not represented by new annotations in the sequence databases. In addition, we describe a new cyclic permutation strategy to identify distant homologues that experienced gene duplication and subsequent deletions. Using this method, we have identified a potential homologue to one additional previously unassigned open reading frame from the H. pylori genome.  相似文献   

9.
A novel method has been developed for acquiring the correct alignment of a query sequence against remotely homologous proteins by extracting structural information from profiles of multiple structure alignment. A systematic search algorithm combined with a group of score functions based on sequence information and structural information has been introduced in this procedure. A limited number of top solutions (15,000) with high scores were selected as candidates for further examination. On a test-set comprising 301 proteins from 75 protein families with sequence identity less than 30%, the proportion of proteins with completely correct alignment as first candidate was improved to 39.8% by our method, whereas the typical performance of existing sequence-based alignment methods was only between 16.1% and 22.7%. Furthermore, multiple candidates for possible alignment were provided in our approach, which dramatically increased the possibility of finding correct alignment, such that completely correct alignments were found amongst the top-ranked 1000 candidates in 88.3% of the proteins. With the assistance of a sequence database, completely correct alignment solutions were achieved amongst the top 1000 candidates in 94.3% of the proteins. From such a limited number of candidates, it would become possible to identify more correct alignment using a more time-consuming but more powerful method with more detailed structural information, such as side-chain packing and energy minimization, etc. The results indicate that the novel alignment strategy could be helpful for extending the application of highly reliable methods for fold identification and homology modeling to a huge number of homologous proteins of low sequence similarity. Details of the methods, together with the results and implications for future development are presented.  相似文献   

10.
Structural alignment of proteins is widely used in various fields of structural biology. In order to further improve the quality of alignment, we describe an algorithm for structural alignment based on text modelling techniques. The technique firstly superimposes secondary structure elements of two proteins and then, models the 3D-structure of the protein in a sequence of alphabets. These sequences are utilized by a step-by-step sequence alignment procedure to align two protein structures. A benchmark test was organized on a set of 200 non-homologous proteins to evaluate the program and compare it to state of the art programs, e.g. CE, SAL, TM-align and 3D-BLAST. On average, the results of all-against-all structure comparison by the program have a competitive accuracy with CE and TM-align where the algorithm has a high running speed like 3D-BLAST.  相似文献   

11.
Standley DM  Toh H  Nakamura H 《Proteins》2008,72(4):1333-1351
A method to functionally annotate structural genomics targets, based on a novel structural alignment scoring function, is proposed. In the proposed score, position-specific scoring matrices are used to weight structurally aligned residue pairs to highlight evolutionarily conserved motifs. The functional form of the score is first optimized for discriminating domains belonging to the same Pfam family from domains belonging to different families but the same CATH or SCOP superfamily. In the optimization stage, we consider four standard weighting functions as well as our own, the "maximum substitution probability," and combinations of these functions. The optimized score achieves an area of 0.87 under the receiver-operating characteristic curve with respect to identifying Pfam families within a sequence-unique benchmark set of domain pairs. Confidence measures are then derived from the benchmark distribution of true-positive scores. The alignment method is next applied to the task of functionally annotating 230 query proteins released to the public as part of the Protein 3000 structural genomics project in Japan. Of these queries, 78 were found to align to templates with the same Pfam family as the query or had sequence identities > or = 30%. Another 49 queries were found to match more distantly related templates. Within this group, the template predicted by our method to be the closest functional relative was often not the most structurally similar. Several nontrivial cases are discussed in detail. Finally, 103 queries matched templates at the fold level, but not the family or superfamily level, and remain functionally uncharacterized.  相似文献   

12.
Sequence alignment profiles have been shown to be very powerful in creating accurate sequence alignments. Profiles are often used to search a sequence database with a local alignment algorithm. More accurate and longer alignments have been obtained with profile-to-profile comparison. There are several steps that must be performed in creating profile-profile alignments, and each involves choices in parameters and algorithms. These steps include (1) what sequences to include in a multiple alignment used to build each profile, (2) how to weight similar sequences in the multiple alignment and how to determine amino acid frequencies from the weighted alignment, (3) how to score a column from one profile aligned to a column of the other profile, (4) how to score gaps in the profile-profile alignment, and (5) how to include structural information. Large-scale benchmarks consisting of pairs of homologous proteins with structurally determined sequence alignments are necessary for evaluating the efficacy of each scoring scheme. With such a benchmark, we have investigated the properties of profile-profile alignments and found that (1) with optimized gap penalties, most column-column scoring functions behave similarly to one another in alignment accuracy; (2) some functions, however, have much higher search sensitivity and specificity; (3) position-specific weighting schemes in determining amino acid counts in columns of multiple sequence alignments are better than sequence-specific schemes; (4) removing positions in the profile with gaps in the query sequence results in better alignments; and (5) adding predicted and known secondary structure information improves alignments.  相似文献   

13.
Sequence alignment is a common method for finding protein structurally conserved/similar regions. However, sequence alignment is often not accurate if sequence identities between to-be-aligned sequences are less than 30%. This is because that for these sequences, different residues may play similar structural roles and they are incorrectly aligned during the sequence alignment using substitution matrix consisting of 20 types of residues. Based on the similarity of physicochemical features, residues can be clustered into a few groups. Using such simplified alphabets, the complexity of protein sequences is reduced and at the same time the key information encoded in the sequences remains. As a result, the accuracy of sequence alignment might be improved if the residues are properly clustered. Here, by using a database of aligned protein structures (DAPS), a new clustering method based on the substitution scores is proposed for the grouping of residues, and substitution matrices of residues at different levels of simplification are constructed. The validity of the reduced alphabets is confirmed by relative entropy analysis. The reduced alphabets are applied to recognition of protein structurally conserved/similar regions by sequence alignment. The results indicate that the accuracy or efficiency of sequence alignment can be improved with the optimal reduced alphabet with N around 9.  相似文献   

14.
A neural network-based method has been developed for the prediction of beta-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST-generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Q(pred), Q(obs), and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published beta-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach.  相似文献   

15.
As a basic tool of modern biology, sequence alignment can provide us useful information in fold, function, and active site of protein. For many cases, the increased quality of sequence alignment means a better performance. The motivation of present work is to increase ability of the existing scoring scheme/algorithm by considering residue-residue correlations better. Based on a coarse-grained approach, the hydrophobic force between each pair of residues is written out from protein sequence. It results in the construction of an intramolecular hydrophobic force network that describes the whole residue-residue interactions of each protein molecule, and characterizes protein's biological properties in the hydrophobic aspect. A former work has suggested that such network can characterize the top weighted feature regarding hydrophobicity. Moreover, for each homologous protein of a family, the corresponding network shares some common and representative family characters that eventually govern the conservation of biological properties during protein evolution. In present work, we score such family representative characters of a protein by the deviation of its intramolecular hydrophobic force network from that of background. Such score can assist the existing scoring schemes/algorithms, and boost up the ability of multiple sequences alignment, e.g. achieving a prominent increase (∼50%) in searching the structurally alike residue segments at a low identity level. As the theoretical basis is different, the present scheme can assist most existing algorithms, and improve their efficiency remarkably.  相似文献   

16.
Sequence alignment is a common method for finding protein structurally conserved/similar regions. However, sequence alignment is often not accurate if sequence identities between to-be-aligned sequences are less than 30%. This is because that for these sequences, different residues may play similar structural roles and they are incorrectly aligned during the sequence alignment using substitution matrix consisting of 20 types of residues. Based on the similarity of physicochemical features, residues can be clustered into a few groups. Using such simplified alphabets, the complexity of protein sequences is reduced and at the same time the key information encoded in the sequences remains. As a result, the accuracy of sequence alignment might be improved if the residues are properly clustered. Here, by using a database of aligned protein structures (DAPS), a new clustering method based on the substitution scores is proposed for the grouping of residues, and substitution matrices of residues at different levels of simplification are constructed. The validity of the reduced alphabets is confirmed by relative entropy analysis. The reduced alphabets are applied to recognition of protein structurally conserved/similar regions by sequence alignment. The results indicate that the accuracy or efficiency of sequence alignment can be improved with the optimal reduced alphabet with N around 9. Supported by the National Natural Science Foundation of China (Grant Nos. 90403120, 10474041 and 10021001) and the Nonlinear Project (973) of the NSM  相似文献   

17.
Ohlson T  Wallner B  Elofsson A 《Proteins》2004,57(1):188-197
To improve the detection of related proteins, it is often useful to include evolutionary information for both the query and target proteins. One method to include this information is by the use of profile-profile alignments, where a profile from the query protein is compared with the profiles from the target proteins. Profile-profile alignments can be implemented in several fundamentally different ways. The similarity between two positions can be calculated using a dot-product, a probabilistic model, or an information theoretical measure. Here, we present a large-scale comparison of different profile-profile alignment methods. We show that the profile-profile methods perform at least 30% better than standard sequence-profile methods both in their ability to recognize superfamily-related proteins and in the quality of the obtained alignments. Although the performance of all methods is quite similar, profile-profile methods that use a probabilistic scoring function have an advantage as they can create good alignments and show a good fold recognition capacity using the same gap-penalties, while the other methods need to use different parameters to obtain comparable performances.  相似文献   

18.
Russell AJ  Torda AE 《Proteins》2002,47(4):496-505
Multiple sequence alignments are a routine tool in protein fold recognition, but multiple structure alignments are computationally less cooperative. This work describes a method for protein sequence threading and sequence-to-structure alignments that uses multiple aligned structures, the aim being to improve models from protein threading calculations. Sequences are aligned into a field due to corresponding sites in homologous proteins. On the basis of a test set of more than 570 protein pairs, the procedure does improve alignment quality, although no more than averaging over sequences. For the force field tested, the benefit of structure averaging is smaller than that of adding sequence similarity terms or a contribution from secondary structure predictions. Although there is a significant improvement in the quality of sequence-to-structure alignments, this does not directly translate to an immediate improvement in fold recognition capability.  相似文献   

19.
The PSI-BLAST algorithm has been acknowledged as one of the most powerful tools for detecting remote evolutionary relationships by sequence considerations only. This has been demonstrated by its ability to recognize remote structural homologues and by the greatest coverage it enables in annotation of a complete genome. Although recognizing the correct fold of a sequence is of major importance, the accuracy of the alignment is crucial for the success of modeling one sequence by the structure of its remote homologue. Here we assess the accuracy of PSI-BLAST alignments on a stringent database of 123 structurally similar, sequence-dissimilar pairs of proteins, by comparing them to the alignments defined on a structural basis. Each protein sequence is compared to a nonredundant database of the protein sequences by PSI-BLAST. Whenever a pair member detects its pair-mate, the positions that are aligned both in the sequential and structural alignments are determined, and the alignment sensitivity is expressed as the percentage of these positions out of the structural alignment. Fifty-two sequences detected their pair-mates (for 16 pairs the success was bi-directional when either pair member was used as a query). The average percentage of correctly aligned residues per structural alignment was 43.5+/-2.2%. Other properties of the alignments were also examined, such as the sensitivity vs. specificity and the change in these parameters over consecutive iterations. Notably, there is an improvement in alignment sensitivity over consecutive iterations, reaching an average of 50.9+/-2.5% within the five iterations tested in the current study.  相似文献   

20.
Identifying non-coding RNA regions on the genome using computational methods is currently receiving a lot of attention. In general, it is essentially more difficult than the problem of detecting protein-coding genes because non-coding RNA regions have only weak statistical signals. On the other hand, most functional RNA families have conserved sequences and secondary structures which are characteristic of their molecular function in a cell. These are known as sequence motifs and consensus structures, respectively. In this paper, we propose an improved method which extends a pairwise structural alignment method for RNA sequences to handle position specific scoring matrices and hence to incorporate motifs into structural alignment of RNA sequences. To model sequence motifs, we employ position specific scoring matrices (PSSMs). Experimental results show that PSSMs enable us to find individual RNA families efficiently, especially if we have biological knowledge such as sequence motifs. K. Sato and K. Morita contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号