首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
1-l-myo-Inositol-1-phosphate synthase catalyzes the conversion of d-glucose 6-phosphate to 1-l-myo-inositol-1-phosphate (MIP), the first and rate-limiting step in the biosynthesis of all inositol-containing compounds. It involves an oxidation, intramolecular aldol cyclization, and reduction. We have determined the first crystal structure of MIP synthase. We present structures of both the NAD-bound enzyme and the enzyme bound to an inhibitor, 2-deoxy-glucitol-6-phosphate. While 58 amino acids are disordered in the unbound form of the enzyme in the vicinity of the active site, the inhibitor nucleates the folding of this domain in a striking example of induced fit, serving to completely encapsulate it within the enzyme. Three helices and a long beta-strand are formed in this process. We postulate a mechanism for the conversion based on the structure of the inhibitor-bound complex.  相似文献   

2.
We have cloned, sequenced, and expressed a human cDNA encoding 1-d-myo-inositol-3-phosphate (MIP) synthase (hINO1). The encoded 62-kDa human enzyme converted d-glucose 6-phosphate to 1-d-myo-inositol 3-phosphate, the rate-limiting step for de novo inositol biosynthesis. Activity of the recombinant human MIP synthase purified from Escherichia coli was optimal at pH 8.0 at 37 degrees C and exhibited K(m) values of 0.57 mm and 8 microm for glucose 6-phosphate and NAD(+), respectively. NH(4)(+) and K(+) were better activators than other cations tested (Na(+), Li(+), Mg(2+), Mn(2+)), and Zn(2+) strongly inhibited activity. Expression of the protein in the yeast ino1Delta mutant lacking MIP synthase (ino1Delta/hINO1) complemented the inositol auxotrophy of the mutant and led to inositol excretion. MIP synthase activity and intracellular inositol were decreased about 35 and 25%, respectively, when ino1Delta/hINO1 was grown in the presence of a therapeutically relevant concentration of the anti-bipolar drug valproate (0.6 mm). However, in vitro activity of purified MIP synthase was not inhibited by valproate at this concentration, suggesting that inhibition by the drug is indirect. Because inositol metabolism may play a key role in the etiology and treatment of bipolar illness, functional conservation of the key enzyme in inositol biosynthesis underscores the power of the yeast model in studies of this disorder.  相似文献   

3.
A key enzyme in the biosynthesis of clinically important aminoglycoside antibiotics is 2-deoxy-scyllo-inosose synthase (DOIS), which catalyzes carbocycle formation from D-glucose-6-phosphate to 2-deoxy-scyllo-inosose through a multistep reaction. This reaction mechanism is similar to the catalysis by dehydroquinate synthase (DHQS) of the cyclization of 3-deoxy-D-arabino-heputulosonate-7-phosphate to dehydroquinate in the shikimate pathway, but significant dissimilarity between these enzymes is also known, particularly in the stereochemistry of the phosphate elimination reaction and the cyclization. Here, the crystal structures of DOIS from Bacillus circulans and its complex with the substrate analog inhibitor carbaglucose-6-phosphate, NAD+, and Co2+ have been determined to provide structural insights into the reaction mechanism. The complex structure shows that an active site exists between the N-terminal and C-terminal domains and that the inhibitor coordinates a cobalt ion in this site. Two subunits exist as a dimer in the asymmetric unit. The two active sites of the dimer were observed to be different. One contains a dephosphorylated compound derived from the inhibitor and the other includes the inhibitor without change. The present study suggested that phosphate elimination proceeds through syn-elimination assisted by Glu 243 and the aldol condensation proceeds via a boat conformation. Also discussed are significant similarities and dissimilarities between DOIS and DHQS, particularly in terms of the structure at the active site and the reaction mechanism.  相似文献   

4.
The initial step in the biosynthesis of the clinically important beta-lactamase inhibitor clavulanic acid involves condensation of two primary metabolites, D-glyceraldehyde 3-phosphate and L-arginine, to give N2-(2-carboxyethyl)arginine, a beta-amino acid. This unusual N-C bond forming reaction is catalyzed by the thiamin diphosphate (ThP2)-dependent enzyme N2-(2-carboxyethyl)arginine synthase. Here we report the crystal structure of N2-(2-carboxyethyl)arginine synthase, complexed with ThP2 and Mg2+, to 2.35-A resolution. The structure was solved in two space groups, P2(1)2(1)2(1) and P2(1)2(1)2. In both, the enzyme is observed in a tetrameric form, composed of a dimer of two more tightly associated dimers, consistent with both mass spectrometric and gel filtration chromatography studies. Both ThP2 and Mg2+ cofactors are present at the active site, with ThP2 in a "V" conformation as in related enzymes. A sulfate anion is observed in the active site of the enzyme in a location proposed as a binding site for the phosphate group of the d-glyceraldehyde 3-phosphate substrate. The mechanistic implications of the active site arrangement are discussed, including the potential role of the aminopyrimidine ring of the ThP2. The structure will form a basis for future mechanistic and structural studies, as well as engineering aimed at production of alternative beta-amino acids.  相似文献   

5.
Different enantiomeric isomers, sn-glycerol-1-phosphate and sn-glycerol-3-phosphate, are used as the glycerophosphate backbones of phospholipids in the cellular membranes of Archaea and the remaining two kingdoms, respectively. In Archaea, sn-glycerol-1-phosphate dehydrogenase is involved in the generation of sn-glycerol-1-phosphate, while sn-glycerol-3-phosphate dehydrogenase synthesizes the enantiomer in Eukarya and Bacteria. The coordinates of sn-glycerol-3-phosphate dehydrogenase are available, although neither the tertiary structure nor the reaction mechanism of sn-glycerol-1-phosphate dehydrogenase is known. Database searching revealed that the archaeal enzyme shows sequence similarity to glycerol dehydrogenase, dehydroquinate synthase and alcohol dehydrogenase IV. The glycerol dehydrogenase, with coordinates that are available today, is closely related to the archaeal enzyme. Using the structure of glycerol dehydrogenase as the template, we built a model structure of the Methanothermobacter thermautotrophicus sn-glycerol-1-phosphate dehydrogenase, which could explain the chirality of the product. Based on the model structure, we determined the following: (1) the enzyme requires a Zn(2+) ion for its activity; (2) the enzyme selectively uses the pro-R hydrogen of the NAD(P)H; (3) the putative active site and the reaction mechanism were predicted; and (4) the archaeal enzyme does not share its evolutionary origin with sn-glycerol-3-phosphate dehydrogenase.  相似文献   

6.
A gene having high sequence homology (45-49%) with the glycerol-1-phosphate dehydrogenase gene from Methanobacterium thermoautotrophicum was cloned from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1 (JCM 9820). This gene expressed in Escherichia coli with the pET vector system consists of 1113 nucleotides with an ATG initiation codon and a TAG termination codon. The molecular mass of the purified enzyme was estimated to be 38 kDa by SDS/PAGE and 72.4 kDa by gel column chromatography, indicating presence as a dimer. The optimum reaction temperature of this enzyme was observed to be 94-96 degrees C at near neutral pH. This enzyme was subjected to two-substrate kinetic analysis. The enzyme showed substrate specificity for NAD(P)H-dependent dihydroxyacetone phosphate reduction and NAD(+)-dependent glycerol-1-phosphate (Gro1P) oxidation. NADP(+)-dependent Gro1P oxidation was not observed with this enzyme. For the production of Gro1P in A. pernix cells, NADPH is the preferred coenzyme rather than NADH. Gro1P acted as a noncompetitive inhibitor against dihydroxyacetone phosphate and NAD(P)H. However, NAD(P)(+) acted as a competitive inhibitor against NAD(P)H and as a noncompetitive inhibitor against dihydroxyacetone phosphate. This kinetic data indicates that the catalytic reaction by glycerol- 1-phosphate dehydrogenase from A. pernix follows a ordered bi-bi mechanism.  相似文献   

7.
1L-Inositol 1-phosphate synthase (EC 5.5.1.4) devoid of bound NAD+ was isolated from mature pollen of Lilium longiflorum ( Easter lily ). The enzyme has a molecular weight of 157,000 +/- 15,000 and a subunit weight of 61,000 +/- 5,000. Kinetic studies of the uninhibited reaction and of inhibition by 2-deoxy-D-glucose 6-phosphate and NADH show the reaction to be ordered sequential with NAD+ adding first. The Michaelis constants for NAD+ and D-glucose 6-phosphate are 2.4 and 65 microM, respectively. The Ki for 2-deoxy-D-glucose 6-phosphate was 8.7 and 2.0 microM, respectively, when D-glucose 6-phosphate or NAD+ was varied. The Ki for NADH and variable NAD+ was 4.7 microM and, for NADH and variable D-glucose 6-phosphate, 3.9 microM.  相似文献   

8.
myo-Inositol-1-phosphate synthase (mIPS) catalyzes the first step in the synthesis of l-myo-inositol-1-phosphate. We have solved and refined the structure of the mIPS from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus at 1.9 A resolution. The enzyme crystallized from poly(ethylene glycol) in the P1 space group with one tetramer in the asymmetric unit and provided a view of the entire biologically active oligomer. Despite significant changes in sequence length and amino acid composition, the general architecture of the archaeal enzyme is similar to that of the eukaryotic mIPS from Saccharomyces cerevisiae and bacterial mIPS from Mycobacterium tuberculosis. The enhanced thermostability of the archaeal enzyme as compared to that from yeast is consistent with deletion of a number of surface loops that results in a significantly smaller protein. In the structure of the A. fulgidus mIPS, the active sites of all four subunits were fully ordered and contained NAD(+) and inorganic phosphate. The structure also contained a single metal ion (identified as K(+)) in two of the four subunits. The analysis of the electrostatic potential maps of the protein suggested the presence of a second metal-ion-binding site in close proximity to the first metal ion and NAD(+). The modeling of the substrate and known inhibitors suggests a critical role for the second metal ion in catalysis and provides insights into the common elements of the catalytic cycle in enzymes from different life kingdoms.  相似文献   

9.
The NAD(+)-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from the hyperthermophilic archaeum Thermoproteus tenax represents an archaeal member of the diverse superfamily of aldehyde dehydrogenases (ALDHs). GAPN catalyzes the irreversible oxidation of d-glyceraldehyde 3-phosphate to 3-phosphoglycerate. In this study, we present the crystal structure of GAPN in complex with its natural inhibitor NADP(+) determined by multiple anomalous diffraction methods. The structure was refined to a resolution of 2.4 A with an R-factor of 0.21. The overall fold of GAPN is similar to the structures of ALDHs described previously, consisting of three domains: a nucleotide-binding domain, a catalytic domain, and an oligomerization domain. Local differences in the active site are responsible for substrate specificity. The inhibitor NADP(+) binds at an equivalent site to the cosubstrate-binding site of other ALDHs and blocks the enzyme in its inactive state, possibly preventing the transition to the active conformation. Structural comparison between GAPN from the hyperthermophilic T. tenax and homologs of mesophilic organisms establishes several characteristics of thermostabilization. These include protection against heat-induced covalent modifications by reducing and stabilizing labile residues, a decrease in number and volume of empty cavities, an increase in beta-strand content, and a strengthening of subunit contacts by ionic and hydrophobic interactions.  相似文献   

10.
Yun M  Park CG  Kim JY  Park HW 《Biochemistry》2000,39(35):10702-10710
The crystal structures of gyceraldehyde 3-phosphate dehydrogenase (GAPDH) from Escherichia coli have been determined in three different enzymatic states, NAD(+)-free, NAD(+)-bound, and hemiacetal intermediate. The NAD(+)-free structure reported here has been determined from monoclinic and tetragonal crystal forms. The conformational changes in GAPDH induced by cofactor binding are limited to the residues that bind the adenine moiety of NAD(+). Glyceraldehyde 3-phosphate (GAP), the substrate of GAPDH, binds to the enzyme with its C3 phosphate in a hydrophilic pocket, called the "new P(i)" site, which is different from the originally proposed binding site for inorganic phosphate. This observed location of the C3 phosphate is consistent with the flip-flop model proposed for the enzyme mechanism [Skarzynski, T., Moody, P. C., and Wonacott, A. J. (1987) J. Mol. Biol. 193, 171-187]. Via incorporation of the new P(i) site in this model, it is now proposed that the C3 phosphate of GAP initially binds at the new P(i) site and then flips to the P(s) site before hydride transfer. A superposition of NAD(+)-bound and hemiacetal intermediate structures reveals an interaction between the hydroxyl oxygen at the hemiacetal C1 of GAP and the nicotinamide ring. This finding suggests that the cofactor NAD(+) may stabilize the transition state oxyanion of the hemiacetal intermediate in support of the flip-flop model for GAP binding.  相似文献   

11.
Fungal infections are a growing problem in contemporary medicine, yet only a few antifungal agents are used in clinical practice. In our laboratory we proposed the enzyme L-glutamine: D-fructose-6-phosphate amidotransferase (EC 2.6.1.16) as a new target for antifungals. The structure of this enzyme consists of two domains, N-terminal and C-terminal ones, catalysing glutamine hydrolysis and sugar-phosphate isomerisation, respectively. In our laboratory a series of potent selective inhibitors of GlcN-6-P synthase have been designed and synthesised. One group of these compounds, including the most studied N3-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid (FMDP), behave like glutamine analogs acting as active-site-directed inactivators, blocking the N-terminal, glutamine-binding domain of the enzyme. The second group of GlcN-6-P synthase inhibitors mimic the transition state of the reaction taking place in the C-terminal sugar isomerising domain. Surprisingly, in spite of the fact that glutamine is the source of nitrogen for a number of enzymes it turned out that the glutamine analogue FMDP and its derivatives are selective against GlcN-6-P synthase and they do not block other enzymes, even belonging to the same family of glutamine amidotransferases. Our molecular modelling studies of this phenomenon revealed that even within the family of related enzymes substantial differences may exist in the geometry of the active site. In the case of the glutamine amidotransferase family the glutamine binding site of GlcN-6-P synthase fits a different region of the glutamine conformational space than other amidotransferases. Detailed analysis of the interaction pattern for the best known, so far, inhibitor of the sugar isomerising domain, namely 2-amino-2-deoxy-D-glucitol-6-phosphate (ADGP), allowed us to suggest changes in the structure of the inhibitor that should improve the interaction pattern. The novel ligand was designed and synthesised. Biological experiments confirmed our predictions. The new compound named ADMP is a much better inhibitor of glucosamine-6-phosphate synthase than ADGP.  相似文献   

12.
Chen L  Zhou C  Yang H  Roberts MF 《Biochemistry》2000,39(40):12415-12423
A gene putatively identified as the Archaeoglobus fulgidus inositol-1-phosphate synthase (IPS) gene was overexpressed to high level (about 30-40% of total soluble cellular proteins) in Escherichia coli. The recombinant protein was purified to homogeneity by heat treatment followed by two column chromatographic steps. The native enzyme was a tetramer of 168 +/- 4 kDa (subunit molecular mass of 44 kDa). At 90 degrees C the K(m) values for glucose-6-phosphate and NAD(+) were estimated as 0.12 +/- 0.04 mM and 5.1 +/- 0.9 microM, respectively. Use of (D)-[5-(13)C]glucose-6-phosphate as a substrate confirmed that the stereochemistry of the product of the IPS reaction was L-myo-inositol-1-phosphate. This archaeal enzyme, with the highest activity at its optimum growth temperature among all IPS reported (k(cat) = 9.6 +/- 0.4 s(-1) with an estimated activation energy of 69 kJ/mol), was extremely heat stable. However, the most unique feature of A. fulgidus IPS was that it absolutely required divalent metal ions for activity. Zn(2+) and Mn(2+) were the best activators with K(D) approximately 1 microM, while NH(4)(+) (a critical activator for all the other characterized IPS enzymes) had no effect on the enzyme. These properties suggested that this archaeal IPS was a class II aldolase. In support of this, stoichiometric reduction of NAD(+) to NADH could be followed spectrophotometrically when EDTA was present along with glucose-6-phosphate.  相似文献   

13.
Phosphatidylinositol (PI) is essential for Mycobacterium tuberculosis viability and the enzymes involved in the PI biosynthetic pathway are potential antimycobacterial agents for which little structural information is available. The rate-limiting step in the pathway is the production of (L)-myo-inositol 1-phosphate from (D)-glucose 6-phosphate, a complex reaction catalyzed by the enzyme inositol 1-phosphate synthase. We have determined the crystal structure of this enzyme from Mycobacterium tuberculosis (tbINO) at 1.95 A resolution, bound to the cofactor NAD+. The active site is located within a deep cleft at the junction between two domains. The unexpected presence of a zinc ion here suggests a mechanistic difference from the eukaryotic inositol synthases, which are stimulated by monovalent cations, that may be exploitable in developing selective inhibitors of tbINO.  相似文献   

14.
Myo-inositol-1-phosphate (MIP) synthase is a key enzyme in the myo-inositol biosynthesis pathway. Disruption of the inositol signaling pathway is associated with bipolar disorders. Previous work suggested that MIP synthase could be an attractive target for the development of anti-bipolar drugs. Inhibition of this enzyme could possibly help in reducing the risk of a disease in patients. With this objective, three dimensional structure of the protein was modeled followed by the active site prediction. For the first time, computational studies were carried out to obtain structural insights into the interactive behavior of this enzyme with ligands. Virtual screening was carried out using FILTER, ROCS and EON modules of the OpenEye scientific software. Natural products from the ZINC database were used for the screening process. Resulting compounds were docked into active site of the target protein using FRED (Fast Rigid Exhaustive Docking) and GOLD (Genetic Optimization for Ligand Docking) docking programs. The analysis indicated extensive hydrogen bonding network and hydrophobic interactions which play a significant role in ligand binding. Four compounds are shortlisted and their binding assay analysis is underway.  相似文献   

15.
Archaeoglobus fulgidus accumulates di-myo-inositol phosphate (DIP) and diglycerol phosphate (DGP) in response to heat and osmotic stresses, respectively, and the level of glycero-phospho-myo-inositol (GPI) increases primarily when the two stresses are combined. In this work, the pathways for the biosynthesis of these three compatible solutes were established based on the detection of the relevant enzymatic activities and characterization of the intermediate metabolites by nuclear magnetic resonance analysis. The synthesis of DIP proceeds from glucose-6-phosphate via four steps: (i) glucose-6-phosphate was converted into l-myo-inositol 1-phosphate by l-myo-inositol 1-phosphate synthase; (ii) l-myo-inositol 1-phosphate was activated to CDP-inositol at the expense of CTP; this is the first demonstration of CDP-inositol synthesis in a biological system; (iii) CDP-inositol was coupled with l-myo-inositol 1-phosphate to yield a phosphorylated intermediate, 1,1'-di-myo-inosityl phosphate 3-phosphate (DIPP); (iv) finally, DIPP was dephosphorylated into DIP by the action of a phosphatase. The synthesis of the two other polyol-phosphodiesters, DGP and GPI, proceeds via the condensation of CDP-glycerol with the respective phosphorylated polyol, glycerol 3-phosphate for DGP and l-myo-inositol 1-phosphate for GPI, yielding the respective phosphorylated intermediates, 1X,1'X-diglyceryl phosphate 3-phosphate (DGPP) and 1-(1X-glyceryl) myo-inosityl phosphate 3-phosphate (GPIP), which are subsequently dephosphorylated to form the final products. The results disclosed here represent an important step toward the elucidation of the regulatory mechanisms underlying the differential accumulation of these compounds in response to heat and osmotic stresses.  相似文献   

16.
Deoxyhypusine synthase catalyzes the first step in the two-step post-translational synthesis of hypusine, which is uniquely present in eukaryotic initiation factor 5A (eIF5A). Deoxyhypusine synthase and eIF5A are conserved throughout the eukaryotic kingdom, and both are essential for cell proliferation and survival. A previous study (Liao, D. I., Wolff, E. C., Park, M. H., and Davies, D. R. (1998) Structure 6, 23-32) of human deoxyhypusine synthase revealed four active sites of the homotetrameric enzyme located within deep tunnels. These Form I crystals were obtained under conditions of acidic pH and high ionic strength and likely contain an inactive enzyme. Each active-site entrance is blocked by a ball-and-chain motif composed of a region of extended structure capped by a two-turn alpha-helix. We report here at 2.2 A a new Form II crystal of the deoxyhypusine synthase:NAD holoenzyme grown at low ionic strength and pH 8.0, near the optimal pH for enzymatic activity. The ball-and-chain motif could not be detected in the electron density, suggesting that it swings freely and thus it no longer obstructs the active-site entrance. The deoxyhypusine synthase competitive inhibitor N(1)-guanyl-1,7-diaminoheptane (GC(7))is observed bound within the putative active site of the enzyme in the new crystal form (Form II) after exposure to the inhibitor. This first structure of a deoxyhypusine synthase.NAD.inhibitor ternary complex under physiological conditions now provides a structural context to discuss the results of previous biochemical investigations of the deoxyhypusine synthase reaction mechanism. This structure also provides a basis for the development of improved inhibitors and antiproliferative agents.  相似文献   

17.
After removal of tightly bound NAD(+) by using charcoal, a preparation of d-glucose 6-phosphate-1 l-myoinositol 1-phosphate cyclase catalysed the reduction of 5-keto-d-glucitol 6-phosphate and 5-keto-d-glucose 6-phosphate by [4-(3)H]NADH to give [5-(3)H]-glucitol 6-phosphate and [5-(3)H]glucose 6-phosphate respectively. The position of the tritium atom in the latter was shown by degradation. Both enzyme-catalysed reductions were strongly inhibited by 2-deoxy-d-glucose 6-phosphate, a powerful competitive inhibitor of inositol cyclase. The charcoal-treated enzyme preparation also converted 5-keto-d-glucose 6-phosphate into [(3)H]myoinositol 1-phosphate in the presence of [4-(3)H]NADH, but less effectively. These partial reactions of inositol cyclase are interpreted as providing strong evidence for the formation of 5-keto-d-glucose 6-phosphate as an enzyme-bound intermediate in the conversion of d-glucose 6-phosphate into 1 l-myoinositol 1-phosphate. The enzyme was partially inactivated by NaBH(4) in the presence of NAD(+). Glucose 6-phosphate did not increase the inactivation, and there was no inactivation in the absence of NAD(+). There was no evidence for Schiff base formation during the cyclization. d-Glucitol 6-phosphate (l-sorbitol 1-phosphate) was a good inhibitor of the overall reaction. It did not inactivate the enzyme. The apparent molecular weight of inositol cyclase as determined by Sephadex chromatography was 2.15x10(5).  相似文献   

18.
Lei Y  Pawelek PD  Powlowski J 《Biochemistry》2008,47(26):6870-6882
The meta-cleavage pathway for catechol is a central pathway for the bacterial dissimilation of a wide variety of aromatic compounds, including phenols, methylphenols, naphthalenes, and biphenyls. The last enzyme of the pathway is a bifunctional aldolase/dehydrogenase that converts 4-hydroxy-2-ketovalerate to pyruvate and acetyl-CoA via acetaldehyde. The structure of the NAD (+)/CoASH-dependent aldehyde dehydrogenase subunit is similar to that of glyceraldehyde-3-phosphate dehydrogenase, with a Rossmann fold-based NAD (+) binding site observed in the NAD (+)-enzyme complex [Manjasetty, B. A., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 6992-6997]. However, the location of the CoASH binding site was not determined. In this study, hydrogen-deuterium exchange experiments, coupled with peptic digest and mass spectrometry, were used to examine cofactor binding. The pattern of hydrogen-deuterium exchange in the presence of CoASH was almost identical to that observed with NAD (+), consistent with the two cofactors sharing a binding site. This is further supported by the observations that either CoASH or NAD (+) is able to elute the enzyme from an NAD (+) affinity column and that preincubation of the enzyme with NAD (+) protects against inactivation by CoASH. Consistent with these data, models of the CoASH complex generated using AUTODOCK showed that the docked conformation of CoASH can fully occupy the cavity containing the enzyme active site, superimposing with the NAD (+) cofactor observed in the X-ray crystal structure. Although CoASH binding Rossmann folds have been described previously, this is the first reported example of a Rossmann fold that can alternately bind CoASH or NAD (+) cofactors required for enzymatic catalysis.  相似文献   

19.
The key enzyme in the biosynthesis of clinically important aminocyclitol antibiotics is 2-deoxy-scyllo-inosose synthase (DOIS), which converts ubiquitous d-glucose 6-phosphate (G-6-P) into the specific carbocycle, 2-deoxy-scyllo-inosose with an aid of NAD(+)-NADH recycling. The NAD(+)-dependent first step of the DOIS reaction was examined in detail by the use of 6-phosphonate and 6-homophosphonate analogs of G-6-P. Both analogs showed competitive inhibition against the DOIS reaction with K(i) values of 1.3 and 2.8 mM, respectively, due to their inability for the subsequent phosphate elimination. Based on the direct spectrophotometric observation of NADH formed by the hydride transfer from 6-phosphonate to NAD(+), the stereospecificity of the hydride transfer in the DOIS reaction was analyzed with 6-[4-(2)H]phosphonate and was found to be pro-R specific.  相似文献   

20.
myo-Inositol-1-phosphate synthase (mIPS) catalyzes the conversion of glucose-6-phosphate (G-6-P) to inositol-1-phosphate. In the sulfate-reducing archaeon Archaeoglobus fulgidus it is a metal-dependent thermozyme that catalyzes the first step in the biosynthetic pathway of the unusual osmolyte di-myo-inositol-1,1'-phosphate. Several site-specific mutants of the archaeal mIPS were prepared and characterized to probe the details of the catalytic mechanism that was suggested by the recently solved crystal structure and by the comparison to the yeast mIPS. Six charged residues in the active site (Asp225, Lys274, Lys278, Lys306, Asp332, and Lys367) and two noncharged residues (Asn255 and Leu257) have been changed to alanine. The charged residues are located at the active site and were proposed to play binding and/or direct catalytic roles, whereas noncharged residues are likely to be involved in proper binding of the substrate. Kinetic studies showed that only N255A retains any measurable activity, whereas two other mutants, K306A and D332A, can carry out the initial oxidation of G-6-P and reduction of NAD+ to NADH. The rest of the mutant enzymes show major changes in binding of G-6-P (monitored by the 31P line width of inorganic phosphate when G-6-P is added in the presence of EDTA) or NAD+ (detected via changes in the protein intrinsic fluorescence). Characterization of these mutants provides new twists on the catalytic mechanism previously proposed for this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号