首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Modern rRNAs are the historic consequence of an ongoing evolutionary exploration of a sequence space. These extant sequences belong to a special subset of the sequence space that is comprised only of those primary sequences that can validly perform the biological function(s) required of the particular RNA. If it were possible to readily identify all such valid sequences, stochastic predictions could be made about the relative likelihood of various evolutionary pathways available to an RNA. Herein an experimental system which can assess whether a particular sequence is likely to have validity as a eubacterial 5S rRNA is described. A total of ten naturally occurring, and hence known to be valid, sequences and two point mutants of unknown validity were used to test the usefulness of the approach. Nine of the ten valid sequences tested positive whereas both mutants tested as clearly defective. The tenth valid sequence gave results that would be interpreted as reflecting a borderline status were the answer not known. These results demonstrate that it is possible to experimentally determine which sequences in local regions of the sequence space are potentially valid 5S rRNAs. This approach will allow direct study of the constraints governing RNA evolution and allow inquiry into how the last common ancestor of extant life apparently came to have very complex ribosomal RNAs that subsequently were very conserved.  相似文献   

2.
Over evolutionary time RNA sequences which are successfully fixed in a population are selected from among those that satisfy the structural and chemical requirements imposed by the function of the RNA. These sequences together comprise the structure space of the RNA. In principle, a comprehensive understanding of RNA structure and function would make it possible to enumerate which specific RNA sequences belong to a particular structure space and which do not. We are using bacterial 5S rRNA as a model system to attempt to identify principles that can be used to predict which sequences do or do not belong to the 5S rRNA structure space. One promising idea is the very intuitive notion that frequently seen sequence changes in an aligned data set of naturally occurring 5S rRNAs would be widely accepted in many other 5S rRNA sequence contexts. To test this hypothesis, we first developed well-defined operational definitions for a Vibrio region of the 5S rRNA structure space and what is meant by a highly variable position. Fourteen sequence variants (10 point changes and 4 base-pair changes) were identified in this way, which, by the hypothesis, would be expected to incorporate successfully in any of the known sequences in the Vibrio region. All 14 of these changes were constructed and separately introduced into the Vibrio proteolyticus 5S rRNA sequence where they are not normally found. Each variant was evaluated for its ability to function as a valid 5S rRNA in an E. coli cellular context. It was found that 93% (13/14) of the variants tested are likely valid 5S rRNAs in this context. In addition, seven variants were constructed that, although present in the Vibrio region, did not meet the stringent criteria for a highly variable position. In this case, 86% (6/7) are likely valid. As a control we also examined seven variants that are seldom or never seen in the Vibrio region of 5S rRNA sequence space. In this case only two of seven were found to be potentially valid. The results demonstrate that changes that occur multiple times in a local region of RNA sequence space in fact usually will be accepted in any sequence context in that same local region.  相似文献   

3.
Forty-nine complete 12S ribosomal RNA (rRNA) gene sequences from a diverse assortment of mammals (one monotreme, 11 marsupials, 37 placentals), including 11 new sequences, were employed to establish a ``core' secondary structure model for mammalian 12S rRNA. Base-pairing interactions were assessed according to the criteria of potential base-pairing as well as evidence for base-pairing in the form of compensatory mutations. In cases where compensatory evidence was not available among mammalian sequences, we evaluated evidence among other vertebrate 12S rRNAs. Our results suggest a core model for secondary structure in mammalian 12S rRNAs with deletions as well as additions to the Gutell (1994: Nucleic Acids Res. 22) models for Bos and Homo. In all, we recognize 40 stems, 34 of which are supported by at least some compensatory evidence within Mammalia. We also investigated the occurrence and conservation in mammalian 12S rRNAs of nucleotide positions that are known to participate in the decoding site in E. coli. Twenty-four nucleotide positions known to participate in the decoding site in E. coli also occur among mammalian 12S rRNAs and 17 are invariant for the same base as in E. coli. Patterns of nucleotide substitution were assessed based on our secondary structure model. Transitions in loops become saturated by approximately 10–20 million years. Transitions in stems, in turn, show partial saturation at 20 million years but divergence continues to increase beyond 100 million years. Transversions accumulate linearly beyond 100 million years in both stems and loops although the rate of accumulation of transversions is three- to fourfold higher in loops. Presumably, this difference results from constraints to maintain pairing in stems. Received: 21 June 1995 / Accepted: 25 March 1996  相似文献   

4.
The origin and diversification of RNA secondary structure were traced using cladistic methods. Structural components were coded as polarized and ordered multi-state characters, following a model of character state transformation outlined by considerations in statistical mechanics. Several classes of functional RNA were analyzed, including ribosomal RNA (rRNA). Considerable phylogenetic signal was present in their secondary structure. The intrinsically rooted phylogenies reconstructed from evolved RNA structure depicted those derived from nucleic acid sequence at all taxonomical levels, and grouped organisms in concordance with traditional classification, especially in the archaeal and eukaryal domains. Natural selection appears therefore to operate early in the information flow that originates in sequence and ends in an adapted phenotype. When examining the hierarchical classification of the living world, phylogenetic analysis of secondary structure of the small and large rRNA subunits reconstructed a universal tree of life that branched in three monophyletic groups corresponding to Eucarya, Archaea, and Bacteria, and was rooted in the eukaryotic branch. Ribosomal characters involved in the translational cycle could be easily traced and showed that transfer RNA (tRNA) binding domains in the large rRNA subunit evolved concurrently with the rest of the rRNA molecule. Results suggest it is equally parsimonious to consider that ancestral unicellular eukaryotes or prokaryotes gave rise to all extant life forms and provide a rare insight into the early evolution of nucleic acid and protein biosynthesis. Received: 13 September 2000 / Accepted: 27 August 2001  相似文献   

5.
A 2550-bp portion of the mitochondrial genome of a Demosponge, genus Tetilla, was amplified from whole genomic DNA extract and sequenced. The sequence was found to code for the 3′ end of the 16S rRNA gene, cytochrome c oxidase subunit II, a lysine tRNA, ATPase subunit 8, and a 5′ portion of ATPase subunit 6. The Porifera cluster distinctly within the eumetazoan radiation, as a sister group to the Cnidaria. Also, the mitochondrial genetic code of this sponge is likely identical to that found in the Cnidaria. Both the full COII DNA and protein sequences and a portion of the 16S rRNA gene were found to possess a striking similarity to published Cnidarian mtDNA sequences, allying the Porifera more closely to the Cnidaria than to any other metazoan phylum. The gene arrangement, COII—tRNALys—ATP8—ATP6, is observed in many Eumetazoan phyla and is apparently ancestral in the metazoa. Received: 24 November 1997 / Accepted: 14 September 1998  相似文献   

6.
A portion of the 5S ribosomal RNA (rRNA) structure space in the vicinity of the Vibrio proteolyticus 5S rRNA sequence is explored in detail with the intention of establishing principles that will allow a priori prediction of which sequences would be valid members of a particular RNA structure space. Four hundred and one sequence variants differing from the V. proteolyticus 5S rRNA wild-type sequence in 1-7 positions were characterized using an in vivo assay system. Most significantly, it was found that in general, the phenotypic effects of single changes were independent of the phenotypic effect of a second change. As a result, it was possible to use the new data in conjunction with results from prior studies of the same RNA to develop "truth tables" to predict which multiple change variants would be functional and which would be nonfunctional. The actual phenotype of 93.8% of the multichange variants studied was consistent with the predictions made using truth tables thereby providing for perhaps the first time an upper limit estimate of how frequent unexpected interactions are. It was also observed that single changes at positions involved in secondary structure were no more likely to be invalid than changes in other regions. In particular, internal changes in long standard stems were in fact almost always tolerated. Changes at positions that were hypervariable in the context of an alignment of related sequences were, as expected, usually found to be valid. However, the potential validity of changes that were idiosyncratic to a single lineage of related sequences when placed in the V. proteolyticus 5S rRNA context was unpredictable.  相似文献   

7.
The complete nucleotide sequence of the mitochondrial genome was determined for a conger eel, Conger myriaster (Elopomorpha: Anguilliformes), using a PCR-based approach that employs a long PCR technique and many fish-versatile primers. Although the genome [18,705 base pairs (bp)] contained the same set of 37 mitochondrial genes [two ribosomal RNA (rRNA), 22 transfer RNA (tRNA), and 13 protein-coding genes] as found in other vertebrates, the gene order differed from that recorded for any other vertebrates. In typical vertebrates, the ND6, tRNAGlu, and tRNAPro genes are located between the ND5 gene and the control region, whereas the former three genes, in C. myriaster, have been translocated to a position between the control region and the tRNAPhe gene that are contiguously located at the 5′ end of the 12S rRNA gene in typical vertebrates. This gene order is similar to the recently reported gene order in four lineages of birds in that the latter lack the ND6, tRNAGlu, and tRNAPro genes between the ND5 gene and the control region; however, the relative position of the tRNAPro to the ND6–tRNAGlu genes in C. myriaster was different from that in the four birds, which presumably resulted from different patterns of tandem duplication of gene regions followed by gene deletions in two distantly related groups of organisms. Sequencing of the ND5–cyt b region in 11 other anguilliform species, representing 11 families, plus one outgroup species, revealed that the same gene order as C. myriaster was shared by another 4 families, belonging to the suborder Congroidei. Although the novel gene orders of four lineages of birds were indicated to have multiple independent origins, phylogenetic analyses using nucleotide sequences from the mitochondrial 12S rRNA and cyt b genes suggested that the novel gene orders of the five anguilliform families had originated in a single ancestral species. Received: 13 July 2000 / Accepted: 30 November 2000  相似文献   

8.
The complete nucleotide sequence of the SSU rRNA gene from the soil bug, Armadillidium vulgare (Crustacea, Isopoda), was determined. It is 3214 bp long, with a GC content of 56.3%. It is not only the longest SSU rRNA gene among Crustacea but also longer than any other SSU rRNA gene except that of the strepsipteran insect, Xenos vesparum (3316 bp). The unusually long sequence of this species is explained by the long sequences of variable regions V4 and V7, which make up more than half of the total length. RT-PCR analysis of these two regions showed that the long sequences also exist in the mature rRNA and sequence simplicity analysis revealed the presence of slippage motifs in these two regions. The putative secondary structure of the rRNA is typical for eukaryotes except for the length and shape variations of the V2, V4, V7, and V9 regions. Each of the V2, V4, and V7 regions was elongated, while the V9 region was shortened. In V2, two bulges, located between helix 8 and helix 9 and between helix 9 and helix 10, were elongated. In V4, stem E23-3 was dramatically expanded, with several small branched stems. In V7, stem 43 was branched and expanded. Comparisons with the unusually long SSU rRNAs of other organisms imply that the increase in total length of SSU rRNA is due mainly to expansion in the V4 and V7 regions. Received: 2 March 1999 / Accepted: 22 July 1999  相似文献   

9.
Mitochondrial small-subunit (19S) rDNA sequences were obtained from 10 angiosperms to further characterize sequence divergence levels and structural variation in this molecule. These sequences were derived from seven holoparasitic (nonphotosynthetic) angiosperms as well as three photosynthetic plants. 19S rRNA is composed of a conservative core region (ca. 1450 nucleotides) as well as two variable regions (V1 and V7). In pairwise comparisons of photosynthetic angiosperms to Glycine, the core 19S rDNA sequences differed by less than 1.4%, thus supporting the observation that variation in mitochondrial rDNA is 3–4 times lower than seen in protein coding and rDNA genes of other subcellular organelles. Sequences representing four distinct lineages of nonasterid holoparasites showed significantly increased numbers of substitutions in their core 19S rDNA sequences (2.3–7.6%), thus paralleling previous findings that showed accelerated rates in nuclear (18S) and plastid (16S) rDNA from the same plants. Relative rate tests confirmed the accelerated nucleotide substitution rates in the holoparasites whereas rates in nonparasitic plants were not significantly increased. Among comparisons of both parasitic and nonparasitic plants, transversions outnumbered transitions, in many cases more than two to one. The core 19S rRNA is conserved in sequence and structure among all nonparasitic angiosperms whereas 19S rRNA from members of holoparasitic Balanophoraceae have unique extensions to the V5 and V6 variable domains. Substitution and insertion/deletion mutations characterized the V1 and V7 regions of the nonasterid holoparasites. The V7 sequence of one holoparasite (Scybalium) contained repeat motifs. The cause of substitution rate increases in the holoparasites does not appear to be a result of RNA editing, hence the underlying molecular mechanism remains to be fully documented. Received: 18 May 1997 / Accepted: 11 July 1997  相似文献   

10.
This study provides a phylogenetic/comparative approach to deciphering the processes underlying the evolution of plastid rRNA genes in genomes under relaxed functional constraints. Nonphotosynthetic green algal taxa that belong to two distinct classes, Chlorophyceae (Polytoma) and Trebouxiophyceae (Prototheca), were investigated. Similar to the situation described previously for plastid 16S rRNA genes in nonphotosynthetic land plants, nucleotide substitution levels, extent of structural variations, and percentage AT values are increased in nonphotosynthetic green algae compared to their closest photosynthetic relatives. However, the mutational processes appear to be different in many respects. First, with the increase in AT content, more transversions are noted in Polytoma and holoparasite angiosperms, while more transitions characterize the evolution of the 16S rDNA sequences in Prototheca. Second, although structural variations do accumulate in both Polytoma and Prototheca (as well as holoparasitic plastid 16S rRNAs), insertions as large as 1.6 kb characterize the plastid 16S rRNA genes in the former, whereas significantly smaller indels (not exceeding 24 bp) seem to be more prevalent in the latter group. The differences in evolutionary rates and patterns within and between lineages might be due to mutations in replication/repair-related genes; slipped-strand mispairing is likely the mechanism responsible for the expansion of insertions in Polytoma plastid 16S rRNA genes. Received: 29 December 2000 / Accepted: 18 May 2001  相似文献   

11.
RNA secondary-structure folding algorithms predict the existence of connected networks of RNA sequences with identical secondary structures. Fitness landscapes that are based on the mapping between RNA sequence and RNA secondary structure hence have many neutral paths. A neutral walk on these fitness landscapes gives access to a virtually unlimited number of secondary structures that are a single point mutation from the neutral path. This shows that neutral evolution explores phenotype space and can play a role in adaptation. Received: 23 December 1995 / Accepted: 17 March 1996  相似文献   

12.
Complete sequences of cytochrome b (1,137 bases) and 12S ribosomal RNA (961 bases) genes in mitochondrial DNA were successfully determined from the woolly mammoth (Mammuthus primigenius), African elephant (Loxodonta africana), and Asian elephant (Elephas maximus). From these sequence data, phylogenetic relationships among three genera were examined. Molecular phylogenetic trees reconstructed by the neighbor-joining and the maximum parsimony methods provided an identical topology both for cytochrome b and 12S rRNA genes. These results support the ``Mammuthus-Loxodonta' clade, which is contrary to some previous morphological reports that Mammuthus is more closely related to Elephas than to Loxodonta. Received: 8 April 1997 / Accepted: 23 July 1997  相似文献   

13.
The phylogenetic relationships among the species belonging to the family Pectinidae are still an issue of debate. The mitochondrial DNA sequences from the large ribosomal RNA gene may be of great value for systematic and phylogenetic studies within families. Partial sequences of the 16S rRNA gene were obtained for the scallop species Adamussium colbecki, Aequipecten opercularis, Chlamys glabra, C. islandica, C. varia, and Pecten jacobeus and compared with the published sequence of Pecten maximus. The present molecular data show that Chlamys are polyphyletic and do not support the assignment of these species to the two subfamilies Chlamydinae and Pectininae. Moreover, the minimal genetic distance between P. maximus and P. jacobeus suggests that they could belong to the same species. Received: 24 May 1999 / Accepted: 1 September 1999  相似文献   

14.
In the past, 18S rRNA sequences have proved to be very useful for tracing ancient divergences but were rarely used for resolving more recent ones. Moreover, it was suggested that the molecule does not contain useful information to resolve divergences which took place during less than 40 Myr. The present paper takes littorinid phylogeny as a case study to reevaluate the utility of the molecule for resolving recent divergences. Two data sets for nine species of the snail family Littorinidae were analyzed, both separately and combined. One data set comprised 7 new complete 18S rRNA sequences aligned with 2 published littorinid sequences; the other comprised 12 morphological, 1 biochemical, and 2 18S rRNA secondary structure characters. On the basis of its ability to confirm generally accepted relationships and the congruence of results derived from the different data sets, it is concluded that 18S rRNA sequences do contain information to resolve ``rapid' cladogenetic events, provided that they occurred in the not too distant past. 18S rRNA sequences yielded support for (1) the branching order (L. littorea, (L. obtusata, (L. saxatilis, L. compressa))) and (2) the basal position of L. striata in the Littorina clade. Received: 6 February 1998 / Accepted: 20 March 1998  相似文献   

15.
Four genera of the Phacotaceae (Phacotus, Pteromonas, Wislouchiella, Dysmorphococcus), a family of loricated green algal flagellates within the Volvocales, were investigated by means of transmission electron microscopy and analysis of the nuclear encoded small-subunit ribosomal RNA (18S rRNA) genes and the plastid-encoded rbcL genes. Additionally, the 18S rDNA of Haematococcus pluvialis and the rbcL sequences of Chlorogonium elongatum, C. euchlorum, Dunaliella parva, Chloromonas serbinowii, Chlamydomonas radiata, and C. tetragama were determined. Analysis of ultrastructural data justified the separation of the Phacotaceae into two groups. Phacotus, Pteromonas, and Wislouchiella generally shared the following characters: egg-shaped protoplasts, a single pyrenoid with planar thylakoid double-lamellae, three-layered lorica, flagellar channels as part of the central lorica layer, mitochondria located in the central cytoplasm, lorica development that occurs in mucilaginous zoosporangia that are to be lysed, and no acid-resistant cell walls. Dysmorphococcus was clearly different in each of the characters mentioned. Direct comparison of sequences of Phacotus lenticularis, Pteromonas sp., Pteromonas protracta, and Wislouchiella planctonica revealed DNA sequence homologies of ≥98.0% within the 18S gene and 93.9% within the rbcL gene. D. globosus was quite different from these species, with a maximum of 92.9% homology in the 18S rRNA and ≤86.6% in the rbcL gene. It showed major similarities to the 18S rDNA of Dunaliella salina, with 95.3%, and to the rbcL sequence of Chlamydomonas tetragama, with 90.3% sequence homology. Additionally, the Phacotaceae sensu stricto exclusively shared 10 (rbcL: 4) characters which were present neither in other Chlamydomonadales nor in Dysmorphococcus globosus. Different phylogenetic analysis methods confirmed the hypothesis that the Phacotaceae are polyphyletic. The Phacotaceae sensu stricto form a stable cluster with affinities to the Dunaliellaes and possibly Haematococcus pluvialis. Dysmorphococcus globosus represented an independent lineage that is possibly related to Chlamydomonas moewusii and C. tetragama. Received: 9 June 1997 / Accepted: 17 October 1997  相似文献   

16.
Complete chloroplast 23S rRNA and psbA genes from five peridinin-containing dinoflagellates (Heterocapsa pygmaea, Heterocapsa niei, Heterocapsa rotun-data, Amphidinium carterae, and Protoceratium reticulatum) were amplified by PCR and sequenced; partial sequences were obtained from Thoracosphaera heimii and Scrippsiella trochoidea. Comparison with chloroplast 23S rRNA and psbA genes of other organisms shows that dinoflagellate chloroplast genes are the most divergent and rapidly evolving of all. Quartet puzzling, maximum likelihood, maximum parsimony, neighbor joining, and LogDet trees were constructed. Intersite rate variation and invariant sites were allowed for with quartet puzzling and neighbor joining. All psbA and 23S rRNA trees showed peridinin-containing dinoflagellate chloroplasts as monophyletic. In psbA trees they are related to those of chromists and red algae. In 23S rRNA trees, dinoflagellates are always the sisters of Sporozoa (apicomplexans); maximum likelihood analysis of Heterocapsa triquetra 16S rRNA also groups the dinoflagellate and sporozoan sequences, but the other methods were inconsistent. Thus, dinoflagellate chloroplasts may actually be related to sporozoan plastids, but the possibility of reproducible long-branch artifacts cannot be strongly ruled out. The results for all three genes fit the idea that dinoflagellate chloroplasts originated from red algae by a secondary endosymbiosis, possibly the same one as for chromists and Sporozoa. The marked disagreement between 16S rRNA trees using different phylogenetic algorithms indicates that this is a rather poor molecule for elucidating overall chloroplast phylogeny. We discuss possible reasons why both plastid and mitochondrial genomes of alveolates (Dinozoa, Sporozoa and Ciliophora) have ultra-rapid substitution rates and a proneness to unique genomic rearrangements. Received: 27 December 1999 / Accepted: 24 March 2000  相似文献   

17.
18.
The chloroplast ribosomal unit of Chlamydomonas reinhardii displays two features which are not shared by other chloroplast ribosomal units. These include the presence of an intron in the 23 S ribosomal RNA gene and of two small genes coding for 3 S and 7 S rRNA in the spacer between the 16 S and 23 S rRNA genes (Rochaix & Malnoë, 1978). Sequencing of the 7 S and 3 S rRNAs as well as their genes and neighbouring regions has shown that: (1) the 7 S and 3 S rRNA genes are 282 and 47 base-pairs long, respectively, and are separated by a 23 base-pair A + T-rich spacer. (2) A sequence microheterogeneity exists within the 3 S RNA genes. (3) The sequences of the 7 S and 3 S rRNAs are homologous to the 5′ termini of prokaryotic and other chloroplast 23 S rRNAs, indicating that the C. reinhardii counterparts of 23 S rRNA have a composite structure. (4) The sequences of the 7 S and 3 S rRNAs are related to that of cytoplasmic 5.8 S rRNA, suggesting that these RNAs may perform similar functions in the ribosome. (5) Partial nucleotide sequence complementarity is observed between the 5′ ends of the 7 S and 3 S RNAs on one hand and the 23 S rRNA sequences which flank the ribosomal intron on the other. These data are compatible with the idea that these small rRNAs may play a role in the processing of the 23 S rRNA precursor.  相似文献   

19.
Multiple copies of a given ribosomal RNA gene family undergo concerted evolution such that sequences of all gene copies are virtually identical within a species although they diverge normally between species. In eukaryotes, gene conversion and unequal crossing over are the proposed mechanisms for concerted evolution of tandemly repeated sequences, whereas dispersed genes are homogenized by gene conversion. However, the homogenization mechanisms for multiple-copy, normally dispersed, prokaryotic rRNA genes are not well understood. Here we compared the sequences of multiple paralogous rRNA genes within a genome in 12 prokaryotic organisms that have multiple copies of the rRNA genes. Within a genome, putative sequence conversion tracts were found throughout the entire length of each individual rRNA genes and their immediate flanks. Individual conversion events convert only a short sequence tract, and the conversion partners can be any paralogous genes within the genome. Interestingly, the genic sequences undergo much slower divergence than their flanking sequences. Moreover, genomic context and operon organization do not affect rRNA gene homogenization. Thus, gene conversion underlies concerted evolution of bacterial rRNA genes, which normally occurs within genic sequences, and homogenization of flanking regions may result from co-conversion with the genic sequence. Received: 31 March 2000 / Accepted: 15 June 2000  相似文献   

20.
Intraindividual and Interspecies Variation in the 5S rDNA of Coregonid Fish   总被引:5,自引:0,他引:5  
This study was designed to characterize further the nontranscribed intergenic spacers (NTSs) of the 5S rRNA genes of fish and evaluate this marker as a tool for comparative studies. Two members of the closely related North American Great Lakes cisco species complex (Coregonus artedi and C. zenithicus) were chosen for comparison. Fluorescence in situ hybridization found the ciscoes to have a single multicopy 5S locus located in a C band-positive region of the largest submetacentric chromosome. The entire NTS was amplified from the two species by polymerase chain reaction with oligonucleotide primers anchored in the conserved 5S coding region. Complete sequences were determined for 25 clones from four individuals representing two discrete NTS length variants. Sequence analysis found the length variants to result from presence of a 130-bp direct repeat. No two sequences from a single fish were identical. Examination of sequence from the coding region revealed two types of 5S genes in addition to pseudogenes. This suggests the presence of both somatic and germline (oocyte) forms of the 5S gene in the genome of Coregonus. The amount of variation present among NTS sequences indicates that accumulation of variation (mutation) is greater in this multicopy gene than is gene conversion (homogenization). The high level of sequence variation makes the 5S NTS an inappropriate DNA sequence for comparisons of closely related taxa. Received: 22 August 1997 / Accepted: 31 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号